
A STEP TOWARDS

BUILDING TRUSTWORTHY

WIRELESS SENSOR NETWORK

Himanshu Goyal

i

A STEP TOWARDS

BUILDING TRUSTWORTHY

WIRELESS SENSOR NETWORK

Thesis submitted

in partial fulfillment of the requirements for the award of the

Master of Technology

in

Computer Science & Engineering

(under the Dual-Degree Programme)

by

Himanshu Goyal

17CS02011

Under the supervision of

Dr. Sudipta Saha

School of Electrical Sciences

Indian Institute of Technology Bhubaneswar

Orissa, India - 752050

May 2022 © Himanshu Goyal. All rights reserved.

Indian Institute of Technology Bhubaneswar

School of Electrical Sciences

APPROVAL OF THE VIVA-VOCE BOARD

May 9, 2022

Certified that the report entitledA STEP TOWARDS BUILDING TRUST-

WORTHY WIRELESS SENSOR NETWORK submitted by Himanshu

Goyal (17CS02011) to the Indian Institute of Technology Bhubaneswar in partial

fulfillment of the requirements for the award of the Master of Technology in Com-

puter Science & Engineering under the Dual-Degree Programme has been accepted

by the examiners during the viva-voce examination held today.

(Supervisor) (External Examiner)

(Internal Examiner 1) (Internal Examiner 2)

iii

DECLARATION BY THE SCHOLAR

I certify that:

• The work contained in the thesis is original and has been done by myself

under the general supervision of my supervisor.

• The work has not been submitted to any other Institute for any degree or

diploma.

• I have followed the guidelines provided by the Institute in writing the report.

• I have conformed to the norms and guidelines given in the Ethical Code of

Conduct of the Institute.

• Wherever I have used materials (data, theoretical analysis, and text) from

other sources, I have given due credit to them by citing them in the text of

the thesis and giving their details in the references.

• Whenever I have quoted written materials from other sources, I have put

them under quotation marks and given due credit to the sources by citing

them and giving required details in the references.

• In case if something is used and it belongs to you, let author know about it.

He will either attribute you or take it out from here.

Himanshu Goyal

17CS02011

iv

CERTIFICATE

This is to certify that the thesis entitled “A STEP TOWARDS BUILD-

ING TRUSTWORTHY WIRELESS SENSOR NETWORK”, submitted

by Himanshu Goyal to Indian Institute of Technology Bhubaneswar, is a record

of bonafide research work under my supervision and I consider it worthy of con-

sideration for the award of the Master of Technology in Computer Science & En-

gineering under the Dual-Degree Programme.

Dr. Sudipta Saha

Place: IIT Bhubaneswar Supervisor

Date: May 15, 2022 School of Electrical Sciences

Indian Institute of Technology Bhubaneswar

v

ACKNOWLEDGEMENT

First of all, I want to express my deep and heartfelt gratitude to my respected guide

and mentor, Dr. Sudipta Saha, for his evergreen blessings, valuable advice, sup-

port, well wishes, and encouragement all along this journey. It has been a great

learning experience doing research with him. Without his unwavering support,

this work would not have been actually in the light of daylight. He has been a fan-

tastic mentor, and I will miss all the amicable conversations we had over the past

years. I am also appreciative of the Decentralised and Smart Systems Research

Group (DSSRG) members for their assistance and insightful suggestions during

the implementation process. I am very grateful to Chandra Shekhar, Jagnyashini

Debadarshini, Abhishek Mishra, and Sourabha Bharadwaj for their assistance in

understanding the software and hardware infrastructure required for experimen-

tation purposes. Moreover, I am happy to be working with Krishna Kodali on

one of our research projects and value his constructive criticism. I relished every

amusing interaction we had while working on this project.

I would like to extend my acknowledgment to my faculty, friends, my juniors

and seniors for their never ending support, care and love which made the journey

in IIT Bhubaneswar very memorable. This journey is a learning curve for me not

only in academic aspects but also in other domain of life. I rejoiced every moment

of this journey with them.

Last but not the least I sincerely believe that this arduous journey would not

have been possible without the help of my parents and grandparents. I am greatly

indebted towards them. Their constant support has been quite strong throughout

the last couple of years, and I hope it continues forever. Finally, I would like to

take this opportunity to embrace my elder sister Priyanka Goyal, for her regular

kind support. She had made me learn the true meaning of perseverance and hard

vi

work. The words of wisdom that I received from her are genuinely indisputable

and have helped me significantly sail through difficult phases of my life so far.

Hence, again a special thanks to all who extended their care and supportive hands

in every aspect of my life in these years during the journey of Dual-Degree program

at IIT Bhubaneswar.

Himanshu GoyalPlace: Indian Institute of Technology Bhubaneswar

Date: May 15, 2022

vii

Abstract

True smart living is fundamentally determined by the available services from

the smart systems such as smart-city, smart-building, smart-home, intelligent

transportation systems, precision agriculture, intelligent environmental monitor-

ing, smart-grid, and many others. Internet-of-Things (IoT)[1]can be considered

the primary enabler of such smart living for humanity. Every such intelligent

system fundamentally thrives upon massive decentralized coordination and coop-

eration among many independent devices. The performance of an IoT system,

thus, significantly depends on how well the devices can talk to each other and how

smoothly they can coordinate together and execute the necessary tasks. However,

the growing concerns of several attacks[2, 3, 4, 5, 6]ranging from data integrity

to data privacy have raised severe concerns about adopting IoT-based smart sys-

tems. These attacks could potentially cause a serious threat to the end-users thus

affect the quality of life and service. Therefore, it has become more important

for these systems to be secure, as well as reliable. Moreover, in certain cases,

such systems also need to be able to preserve privacy too. However, because

of the participation of many devices having low processing capability as well as

high energy constraints, unlike traditional systems, it becomes much more diffi-

cult to achieve these goals. Therefore, in this work we show how we can build a

“Trustworthy IoT/WSN network” comprising of low-power devices that is robust

against intentional/non-intentional device failures and can also provide the service

viii

of carrying out computation over the data held by a set of devices privately and

securely.

In this work, we mainly focused on achieving Byzantine fault tolerance in IoT

networks and privacy-preserving data-aggregation among the participating nodes.

Existing solutions for IoT/WSN systems mostly assume simple non-Byzantine

node failures which is not enough to solve the problem. To combat the pres-

ence of smart devices with malicious intention, Byzantine fault tolerance support

is highly essential in building trustworthy decentralised system. Byzantine fault

tolerance has not been addressed much in the context of IoT/WSN because of its

inherent requirement of extensive data sharing among the nodes. In this work,

we approach to bring a solution to the problem using multi-flooding under time-

slotted form. In particular, we show how the the well-known Practical Byzantine

Fault Tolerant (PBFT) consensus strategy can be remodeled in an efficient form

that is suitable for use in IoT/WSN systems.

Use of smart-systems result in increased ease in our day-to-day living. However,

being assisted by a smart-system indirectly implies being tracked by the ubiqui-

tous sensors attached with the smart IoT-devices that compose a smart-system.

In order to fulfil the goals, the IoT-devices in a smart-system collaborate with

each and for which they need to exchange their data. This in turn lead to an

enhanced scope of passive learning about personal activities of the users of the

smart-systems by the adversaries. Usual way to protect such breach of privacy is

to make the smart-systems depend more on the aggregated data without revealing

the source/origin of the individual components. However, existing solutions for

such privacy-preserving data-aggregation either exploits heavy computation in the

devices or introduce quite high degree of additional communication overhead. Both

of these issues make them inappropriate for low-power IoT-edge system. In this

work, we show an approach where concurrent-transmission (CT) is used to fulfil

ix

the communication demand and realize the privacy-preserving data-aggregation

for low-power systems in a fruitful way.

Keywords: Privacy-Preserving Data aggregation, Threshold Cryptography,

Practical Byzantine Fault tolerance, Broadcast Communication, Data Sharing:

One-to-all, Many-to-Many, All-to-All,etc.

x

Contents

Certificate of Approval iii

Declaration iv

Certificate v

Acknowledgement vi

Abstract viii

List of Tables xiv

List of Figures xv

1 Introduction 1

1.1 Overview of the area . 1

1.2 Motivation and Objectives of the Study 2

1.3 Contribution of the Thesis . 6

1.4 Experimental-setup . 9

1.4.1 Experimental-setup: Simulation Platform 9

1.4.2 Experimental-setup: Emulation Platform 9

2 Literature Review 10

xi

2.1 Communication Mechanisms . 10

2.1.1 All-to-all/Many-to-Many data sharing 11

2.2 Works related to Fault-tolerance in IoT & its drawbacks 12

2.2.1 Non-Byzantine Fault tolerance 12

2.2.2 Byzantine Fault tolerance in IoT and its applications 12

2.2.3 Drawbacks of the prior works 13

2.3 Works related to Privacy-Preserving Data aggregation in IoT & its

drawbacks . 14

2.3.1 Data-aggregation in wireless sensor networks 14

2.3.2 Classification of techniques for private aggregation 15

2.3.3 Drawbacks of the prior works 17

3 Practical Byzantine Fault Tolerance in IoT 21

3.1 Introduction . 21

3.2 Background . 24

3.2.1 Practical-Byzantine Fault tolerance (PBFT) 24

3.3 Design . 26

3.3.1 All-to-all vs many-to-many 28

3.3.2 Restricted behaviour of the traitors 28

3.3.3 Protocol . 29

3.3.4 Restricted data-sharing . 32

3.4 Evaluation . 38

3.4.1 Metrics . 38

3.4.2 Results . 38

3.5 Summary . 40

4 Multi-party computation in IoT 42

4.1 Introduction . 42

xii

4.2 Background . 45

4.3 Design . 47

4.3.1 Privacy-Preserving Data Aggregation 51

4.3.2 Sharing secret pair-wise keys 52

4.3.3 Application of the proposed strategy 53

4.3.4 Robustness . 57

4.3.5 Protocol framework . 58

4.3.6 Time-slotted based multi-flooding vs Asynchronous Commu-

nication: . 59

4.3.7 Scalability . 60

4.4 Evaluation . 62

4.4.1 Shamir-Secret Sharing (SSS) 62

4.4.2 Neighbourhood based Shamir Secret Sharing (NSSS) 65

4.4.3 Parameters and Metric . 66

4.5 Summary . 72

5 Conclusion 73

6 Future Works 74

6.1 Security in Flooding based communication 74

6.2 Privacy-Preserving data aggregation in Active adversarial model . . 77

DISSEMINATION OF RESEARCH RESULTS 78

References 79

xiii

List of Tables

2.1 Summary of the existing approaches to achieve Privacy-Preserving

Data aggregation in IoT/WSN systems. 20

xiv

List of Figures

1.1 Overview of an IoT/WSN network while operating in practical settings 2

3.1 Execution of PBFT. Part (a) shows the flow diagram of a standard

PBFT execution. Part (b) and (c) show the timing diagram of

PBFT without optimizations and with optimizations, respectively. . 27

3.2 Execution of PREPARE Phase using All-to-All Data Dissemination 27

3.3 Percentage of data received by the nodes with the variation of NTX. 32

3.4 (a) Execution of PBFT using flooding based communiction

primitives: Initially the primary/initiator node forwards the Pre-

Prepare request to all nodes using one-to-all. Afterward, all phases

are achieved using broadcast driven data-sharing. Proposed Op-

timised execution via PSBFT: Initially the Pre-Prepare is per-

formed using one-to-all flooding. Afterward, PREPARE phase is

using Minicast primitive, which eventually results in all-to-all data

sharing. Moreover, the COMMIT/VIEW-CHANGE Phase is using

in-network aggregation protocol. 33

3.5 Percentage of Data Received for nodes present at successive hop

distance . 37

3.6 Latency and Radio-on-time for 70 node simulation over various net-

work diameter . 39

xv

3.7 Latency and Radio-on-time for Emulation-1 and Emulation-2 39

4.1 MiniCast chain structure during (a) sharing (b) reconstruction round.

HDR and TRL represent the header and the trailer packets in the

chain, respectively. 46

4.2 Schematic View of end-to-end execution of proposed protocol 48

4.3 An archetypal view of overall Aggregation Process: The

upper image depicts each node’s progress (the Sync node is the

thick red line), while the lower depicts their status. 49

4.4 Intermediate Sum and network coverage in Emulation-1 and Emulation-

2 environments . 68

4.5 Normal Execution: The increment in total number of nodes(N)

and the network diameter (mxn) directly influence both Latency

and Radio-on time (in ms). The sync latency/ROT is measured

for keeping in mind the state of only Sync node whereas, Overall

Latency/ROT is the time for the network-wide calculation of the

final result. 69

4.6 Malicious Execution: The increment in total number of nodes(N)

and the network diameter (mxn) directly influence both Latency

and Radio-on time (in ms). The sync latency/ROT is measured

for keeping in mind the state of only Sync node whereas, Overall

Latency/ROT is the time for the network-wide calculation of the

final result. 70

4.7 Malicious Execution in Emulation Settings 71

4.8 Comparison of our proposed protocol with other state-of-art strategies 71

6.1 A grid layout of 50 nodes with network area 500× 500 m2 76

xvi

6.2 False data spread in an 50 node network with single and multiple

attackers, respectively . 76

xvii

Chapter 1

Introduction

1.1 Overview of the area

The contemporary period has seen the rise of Internet-of-Things (IoT) devices to

serve people with various applications such as smart metering, urban traffic moni-

toring, weather monitoring, and so on. Low Power Wide Area Networks (LPWAN)

technical advancements provide promising solutions for effectively realizing these

existing applications while also opening the door to sophisticated applications such

as Edge Computing, Machine Learning, and Artificial Intelligence. We anticipate

that most services in the future will significantly rely on LPWAN because it in-

corporates features from LoRa, NB-IoT, and SigFox. Consequently, the usage of

smart systems has increased in the recent past quite drastically because of such

intriguing technologies. As a result of it, we are getting more dependent on these

smart systems. However, as people’s quality of life improves, so do the risks asso-

ciated with dependent applications, such as data leakage and the integrity of the

underlying network in the event of a failure. So far, it is generally established that

it is simple to construct protocols that are secure from the outside world through

the usage of traditional cryptographic techniques. However, when we have to

1

Figure 1.1: Overview of an IoT/WSN network while operating in practical settings

create a secure solution that is robust against failures and internal and external

adversaries simultaneously, the scenario changes entirely and becomes non-trivial

despite the usage of cryptography. The typical network structure possible in the

real-world can be visualized as shown in Fig. 6.2. We need protocols that can

provide sufficient guarantees while working in such practical settings.

1.2 Motivation and Objectives of the Study

As a part of our quest for building trustworthy IoT networks, we broadly focus on

the following two domains.

Security and Privacy: A system being secure, as well as trustworthy, may

not be able to preserve the privacy of the data from individual nodes. The problem

of privacy in IoT becomes very important when the sensed data have a relation

2

with specific users. However, preserving privacy under massive IoT systems is very

challenging, especially under multi-hop setting. Sensitive user data may not be

safe to reveal as its propagation doesn’t limit to only one node. The data shared

by each node is the same for all the nodes. If it’s in plain text format, then all

intermediate nodes between the source and sync node can gather relevant infor-

mation about this sensitive data. If it’s not in plain text, then the sync node can

play the role of the potential information seeker. The available standard solutions

assume sync node(s) as trusted third parties, and each node sends its sensed value

to it with an aim to carry out some distributed learning task. Even if messages

are encrypted, and intermediate nodes don’t have access to them, Sync nodes can

decrypt them and see the raw data shared by each node and interpret them locally

to gain more information that clearly breaches node privacy. However, some of

these applications will substantially use sensitive data to achieve the desired goal.

It is understandable from past experience that the exposition of such data (amount

of power consumption, Data used in Health monitoring) can have undesired con-

sequences. Therefore, it becomes necessary to provide such services to users at

the same comfort without compromising their privacy. Moreover, It has been ob-

served that some of these services need to compute aggregation statistics over the

data sensed by the participating nodes. Such aggregation becomes critical when

it is being carried out on particular sensitive data. The traditional cryptographic

techniques have provided us with optimal encryption and decryption techniques.

However, such data obfuscation techniques ensure data security only when it is

in the transmission or storage. Therefore, In order to perform any analytics over

such data, the data eventually needs to be decrypted at the central server to per-

form the final aggregation calculation. Moreover, the central server can certainly

become a single point of failure, as shown in [7]. Thus, it necessitates a system

in place that protects the security of data both while it is in transmission and

3

computation.

However, modern cryptography provides the service of Secure computation that

allows a set of parties to compute some joint function of their private inputs while

guaranteeing privacy (i.e., the parties learn the output and nothing more) and

correctness (meaning the output is correctly distributed). Recently several solu-

tions based on Privacy Enhancing Technologies(PETs) like Homomorphic Encryp-

tion(HE), Differential Privacy(DP), and Secure Multi-party Computation (SMPC)

have been proposed in the literature. However, we believe that techniques like HE

are inappropriate for IoT devices due to their low computation power. Moreover,

we believe such techniques involve high computation with an increase in the num-

ber of nodes in an underlying network. Therefore, we seek MPC-based techniques

to be the best fit for such low-power devices. Despite their low computation over-

head, they frequently require interaction with other participants. Consequently, we

believe that to realize the complete essence of MPC-based solutions for IoT/WSN

networks, we require efficient communication protocols that could quickly achieve

the requisite data sharing needs.

There has been a significant interest in inheriting flooding-based data sharing

for low-power networks. It is so because of their quick convergence time with high

reliability in comparison to asynchronous data sharing-based mechanisms, where

nodes fight for their chance for transmission of their data, resulting in large data

transmission time. This time significantly gets compounded when all the nodes

need to share the data for all other nodes in the network, and this broadcast

is a prime requirement for MPC based solution. So, if MPC solutions are less

compute-intensive on one side of the spectrum, they require substantial commu-

nication infrastructure for realizing the goal. Consequently, we believe this gap

can be bridged in the context of IoT networks with the usage of efficient data

sharing protocols like [8] in asynchronous domain and flooding based communi-

4

cation mechanisms like [9]. Some works in [9] perform in-network aggregation

but do so on plain-text data, which directly breaches the node privacy Moreover,

their aggregation can work only for idempotent functions. Consequently, we seek

an aggregation protocol that can guarantee: Security, Privacy, Robustness, and

Scalability.

Trust: Secure communication protocols alone cannot provide trust in a system.

For example, nodes in the systems can behave maliciously even after complying

with security requirements in the case of applications like distributed database

replication. The applications running on top of a flooding protocol assume every

node is honest and thus would purely depend on information what their neighbors

are saying and assume them to be true blindly. In the case of sensitive, e.g., data

replication) applications, an adversary or a group of adversaries can inject false

data to divert the network from having a single decision. Byzantine fault tolerance

protocols can potentially help in alleviating the problem of failed or maliciously

behaving nodes. The most fundamental strategy, known as Byzantine fault con-

sensus, assists in masking arbitrary failures reported by failing nodes. Byzantine

fault tolerance protocols can potentially help in alleviating the problem of failed or

maliciously behaving nodes. It may therefore be realized that agreement is impor-

tant for reliable decentralized applications. The way these applications leverages

the distributed computing power of IoT nodes is quite motivating and intrigu-

ing. These technological elevations make it more likely that malicious attacks and

software errors will occur regularly. Thus, it has now become a fundamental re-

quirement to build resilient network services that can withstand a wide range of

failure types in distributed systems. However, the incorporation of Byzantine Fault

tolerance seems to be a more promising direction toward the adoption of IoT-based

decentralized applications. The most fundamental strategy, known as Byzantine

fault consensus, assists in masking arbitrary failures reported by failing nodes.

5

Currently, many applications need extensive coordination among their counter-

parts to do the defined job more precisely in low-power wireless networks. These

applications can range from coordination among industrial controllers(Smart Grid)

to mission-critical systems like a swarm of Unmanned Aerial Vehicles(UAVs). For

example, The UAVs could be on some mission and would like to compute the

exact target location with a common agreement to harm the enemy effectively, a

deviation of which can lead to a significant loss. The prior proposed solution in

the domain of consensus using the flooding based transmission [9] only manages

crash failures. They restricted themselves to handling Byzantine failures as their

underlying protocol is designed for in-network data aggregation, whereas we need

all-to-all data sharing for byzantine failures. Thus, we plan to derive trustable con-

sensus and aggregation protocols that can potentially help for any network-wide

operations.

1.3 Contribution of the Thesis

In this work, particularly we view an IoT system as a massive collection of low-

power devices spread over a wide area where each device can do some work, com-

municate with each other, and have limited energy. Moreover, we also consider

that some devices are controlled by adversaries interested in gaining control over

the network or want the network to deviate from the desired goal. The main

weakness of an IoT system is the resource constraints in the devices. However, we

perceive the massive number of devices in IoT as their strength. We view it as a

massively distributed system and plan to compensate for the resource limitation

in the devices with collaborative computing where device-to-device communica-

tion plays a vital role. To appropriately exploit the power of such a massive size,

we deviate from the traditional asynchronous transmission-based communication

6

strategies to time-slotted based multi-flooding based transmission strategies.

The success of the concurrent transmission-based protocols heavily depends on

physical layer phenomena like constructive interference and capture effects which

in turn depend on precise co-ordination among the devices. The underlying as-

sumption for satisfying both of these properties is that all nodes need to share

their data at the same time. The data transmitted by each node needs to be

the same. Hence, no change in either data content or transmission time. Even

any change in the data content of one node may potentially violate these physical

properties. These physical layer phenomena make it even harder to make the con-

current transmission-based strategies secure as well as trustworthy. Thus, building

secure solutions satisfying both these properties is quite a challenge as compared

to asynchronous protocols. Following, we briefly mentions our contributions under

the two broad domains:

• Privacy Preserving data aggregation: A decentralized system is com-

posed of many independent nodes. Collaborative computation among such

nodes is one of the crucial components of such a system. However, in order

to achieve the goal, the nodes may need to share their original input with the

other nodes in the network which may not be always desired. In general, the

nodes may not want to share their private information for any global com-

putation purpose. Computation of such functions itself may be one of the

prime needs of the whole system. It’s a challenging task to achieve these two

conflicting goals together i.e. to compute a joint function on the private in-

puts. The flooding based all-to-all data sharing protocols[9] do not guarantee

an individual node’s data privacy if being used to carry out some distributed

learning task that incorporates data from all the participating nodes. Mak-

ing these protocols privacy-preserving would be an immediate requirement

to build specific applications like body monitoring through smart wearables,

7

smart meters readings in AMI, etc. The works [10, 11] introduce the no-

tion of privacy-preserving computing using homomorphic techniques which

results in an extra overhead in communication. Homomorphic encryption-

based techniques have quite promising power for traditional computers. But

their large computing cost makes them infeasible for low-power devices. The

recent advances in Multi-party Computation (MPC) protocols using secret

sharing schemes[12, 13] pose little overhead but provide sufficient security

guarantees. In the proposed works, we seek MPC-based techniques to be the

best fit for such low-power devices. Despite their low computation overhead,

they frequently require interaction with other participants. Consequently,

we believe that to realize the complete essence of MPC-based solutions for

IoT/WSN networks, we require efficient communication protocols that could

quickly achieve the requisite data sharing needs. In this context, we propose

using Concurrent transmission-based protocols to attain aggregate statistics

out of mutually distrustful entities in a privacy-preserving manner.

• Byzantine Fault tolerance in IoT: Trust is the most crucial factor which

end-users look for before using any distributed application. Bare secure

transmission protocols don’t guarantee the system’s trust. One way of

achieving trust in decentralized networks is through consensus mechanisms.

Recent works such as [14, 15] have tried to bring the concept of consensus

for handling crash faults, i.e., node failures. But they fail to address the

problem of achieving consensus in the presence of Byzantine failures where

participants can behave differently from what they intended to do. In the

proposed works, we are focussing to provide solutions that can help spe-

cific applications to work smoothly even in presence of both crash faults and

byzantine faults.

8

1.4 Experimental-setup

1.4.1 Experimental-setup: Simulation Platform

The experimental set up consists of simulating in ns-2 and MSPSim (TinyOS). We

create the network scenarios as per our need and thus, simulated and experiments

were being performed. After carrying out the primary experiments on simulation

platforms, the same were verified on the emulation platform which consists of real

devices.

1.4.2 Experimental-setup: Emulation Platform

For local experiments we used QEMU emulator for ARM architecture based sensor

nodes which comprised of 802.15.4 compliant radio devices. Here also, we make

emulation setting as per our requirements. For real-devices experiments we used

our local testbed Kanad at IIT Bhubaneswar which also comprised of 802.15.4

compliant sensor devices.

9

Chapter 2

Literature Review

2.1 Communication Mechanisms

Transmissions under asynchronous communication are mostly independent and

uncoordinated. Due to the broadcast-driven nature of the wireless medium, asyn-

chronous communication poses quite a high chance of collision among the packets

transmitted by different nodes causing high wastage of time, bandwidth as well as

energy in the devices. Consequently, applications like flooding, data sharing among

multiple nodes perform poorly with an increase in the number of the participating

devices. Under in-parallel concurrent communication [9] the transmissions of the

packets from different nodes are coordinated which causes them to overlap per-

fectly in time. This in turn triggers physical layer phenomena called capture-effect

which ensures correct reception of the packets in the respective receivers.

Works described in [9] shows how to achieve assign time slots to nodes, the

primary requirement for flooding based protocols, through lightweight software

and hence, gain the benefit in resource-constrained off-the-shelf IoT devices in a

purely decentralized setting. There has been immense development in the context

of IoT networks with the usage of efficient data sharing protocols like [16, 8] in

10

asynchronous domain and flooding based communication mechanisms like [17].

2.1.1 All-to-all/Many-to-Many data sharing

Many-to-Many/All-to-All data sharing described in [17] has been a very important

requirement in IoT/WSN systems. One-to-all flodding based protocols successfully

conveys the data from one node to all other nodes in the network. Some works

achieves many-to-many sharing through a naive way through sequential repetition

of one-to-all floods one-by-one from all the source nodes. However, wide separation

among the floods makes such adoption strategy perform poorly with more nodes

and large areas. However, some more works are there in the other extreme, and

achieves many-to-many data sharing through clever application of heterogeneous

capture-effect. The work MiniCast [17] tries to minimize the inter-flood gaps by

using a packet-level TDMA schedule and achieves all-to-all data sharing in a very

compact form. MiniCast has been shown to outperform with a wide margin for

all-to-all data sharing.

There are quite a few other existing all-to-all data sharing strategies as shown

in [9]. However, these works either extend the same underlying idea or are based on

the concept of MiniCast. The works mostly use multi-channel facilities or efficient

network-coding strategies to enhance the performance. Throughout the course of

this thesis, we mostly use these protocols as a communication medium.

11

2.2 Works related to Fault-tolerance in IoT & its

drawbacks

2.2.1 Non-Byzantine Fault tolerance

Non-Byzantine node failures have been considered in several works [18, 19, 20, 21].

Paxos [19] is one of the earliest and most well-known non-Byzantine consensus

protocols which is later expanded to the protocol Raft [21]. Both Raft and Paxos

have been extensively used in many permission-based environments, e.g., Google’s

globally distributed File System [22], BlockChain enabled Hyperledger Fabric, [23]

etc. Efficient many-to-many interactions, data sharing and consensus in resource-

constrained IoT/WSN systems have been addressed in many works [9]. Very few

of these works deal with the issue of fault tolerance. A recent work [14, 15], ports

the protocol Paxos [19] to low-power IoT/WSN system. However, almost none of

the existing works attempt to combat the existence of Byzantine nodes in IoT.

2.2.2 Byzantine Fault tolerance in IoT and its applications

Byzantine consensus is a significant component in the implementation of BlockChain

technology [24]. For instance, BlockChain assisted crypto-currency BitCoin [25]

uses Proof-of-work (PoW); similarly, PPCoin[26] uses Proof-of-Stake (PoS) to mit-

igate the possibility of Byzantine node failures. While these solutions work quite

effectively in a distributed environment comprised of traditional resourceful desk-

top/server machines, they are not suitable for resource-constrained IoT systems.

Some recent works try to bring the BlockChain service for IoT devices. However,

these works exploit help from the cloud to carry out Byzantine fault-tolerant con-

sensus. Such a split architecture although works but induces a significant delay

and potential issues under higher demand.

12

Achieving Byzantine fault tolerance has been always a much harder job com-

pared to tackling only non-Byzantine failures. The strategy known as Practical

Byzantine Fault Tolerant [27] (PBFT) consensus, shows a quite different approach

to accomplish the goal. Instead of depending on special issues such as computation

capabilities in the participating nodes (as done by PoW, PoS), PBFT relies more on

collaboration among the participants through information exchange which makes it

more suitable for a generic decentralized system. It has gained quite popularity in

various fields. The work [28] shows the application of PBFT in BlockChain-based

audit systems to solve various security concerns in the consensus algorithms. The

work [29] done at Renault Automobile Corp. demonstrates the application PBFT

for the smooth processing of Insurance claims. PBFT has also gained attention

in Industrial IoT [30]. In the context of VANET, PBFT has been already used to

effectively eliminate illusion attacks [31], as well as, enhance the performance of

BlockChain-assisted VANET.

2.2.3 Drawbacks of the prior works

However, communication overhead has been one of the significant challenges in re-

alizing PBFT for real-world smart-systems. There have been attempts to improve

the performance of basic PBFT protocol. For instance, the work [27] reduces the

complexity from exponential [32] to polynomial. A class of works has been done

to make the protocol suitable for IoT systems too. For instance, Pengs et. al. [33]

propose a credit-based mechanism using reinforcement learning in order to reduce

the communication among participants. The set of works [34, 35, 36, 33, 37] at-

tempts to make PBFT scalable by adopting a divide-and-conquer approach where

the system is first divided into multiple layers/groups. The problem is addressed

separately in each of these groups and finally, the group leaders collaborate with

each other to come to a conclusion. However, all these works show a simulation

13

or theoretical validation of the concepts only. In contrast, in the current work, we

make an endeavor to design a lightweight low-latency and scalable realization of

PBFT for real-IoT systems.

2.3 Works related to Privacy-Preserving Data

aggregation in IoT & its drawbacks

2.3.1 Data-aggregation in wireless sensor networks

Data aggregation protocols in WSN have been studied in many prior works such

as [38, 39, 40]. The work [40] evaluates various secure data aggregation protocols

based on different security requirements (e.g., data confidentiality, data integrity)

of WSN. Work presented in [39] investigates secure data aggregation protocols

in IoT by categorizing them into three main classes including tree-based, cluster-

based and centralized architecture and compares these protocols with different

metrics like Accuracy, Network Lifetime and Latency. Most of these works on

PPDA can be broadly classified into three categories based on the key concept

they employ - (a) Homomorphic Encryption (HE) (b) Multi-Party Computation

(MPC) and (c) Data-Obfuscation (DO). The strategy proposed in this work is

based on collaborative data-obfuscation with the help of pseudo-random numbers.

Our work is more aligned with the work proposed in PPMP. However, apart from

these theoretical concepts, in the following we review the existing works based on a

few important issues regarding their practical relevance and applicability to serve

real IoT-systems.

14

2.3.2 Classification of techniques for private aggregation

Homomorphic Encryption

HE: HE allows an aggregation operation to computed directly on cipher text. This

alleviates the requirement of the deciphering of the data by the intermediate for-

warding nodes in a system and hence compute the partial aggregation in a privacy

preserving way. HE has been employed in a quite good number of works to achieve

PPDA [41, 42, 43, 44, 45]. However, an HE based system to work, the sink/final

destination node needs to know the key to decipher the final aggregation result.

This enables the sink nodes to decipher the individual ciphertext of different node.

To resolve these issue, various approaches have been taken. For example, the work

PEPPDA [43]uses a tree structure and dynamic slicing of the data while the work

3PDA uses an intermediate Data Collection Unit. However, although conceptually

these are quite correct, they are not practically realizable in IoT-systems as car-

rying out HE incurs huge computation overhead. Moreover, a significant fraction

of the aggregation strategies do not use any security policy. The survey papers

[40, 39] summarize the use of cryptography in few works. Lightweight crypto-

graphic techniques are used in various works [41, 42]. However, these approaches

are centralised and rely on TTP. Like some exceptions e.g., PPMP [46], our work

does not use any specific cryptographic techniques for data hiding and also assume

insecure channels for communication.

Secure Multi-party computation

MPC: These works mostly adapt a collaborative approach to preserve privacy.

They operate in two rounds of inter-node interactions. In the first round, each

node divides its data into multiple “parts” (shares) following and then share each

of these parts to different nodes. In the second round, the nodes carries out

15

summation of the received values and carry out a global aggregation to get the

final result. The algorithms CPDA and SMART, proposed in the work [47] improve

upon this basic concepts through application of secret-splitting and collaborative

computing. A set of works employs Secure Multi-Party Computation which was

formally introduced in the work [48]. Shamir’s Secret Sharing [49] is the one of

the mostly adapted strategy to achieve SMPC in a decentralized setting. However,

all these MPC based, especially those use secure pair-wise channels, involve huge

data sharing which is a serious concern in energy-constrained IoT-systems.

Data Obfuscation

DO: Obfuscating the data with the help of random noise has been a very standard

way of hiding the original data [50, 51, 52, 46]. Pseudo-random numbers are used

for the purpose. The noise is generated in a organized way so that effective noise

can be removed after aggregation is completed.

Aggregation using Trusted Central Co-ordinator

Trusted Third Party (TTP): Use of a TTP for key distribution or bootstrap-

ping is a common norm used in most of these existing works [41, 42, 53, 45]. Most

of the works employing HE, usually take the help of TTP for key generation since

they don’t perform collaborative computation rather rely on an centralised entity.

However such strategies open up a channel for leaking out private information.

In our work we show an efficient way to generate the keys internally through a

collaborative mechanism and hence fully avoid the use of TTP.

Centralized/Decentralized: Intrinsically, in many of the above mentioned

works [43, 44, 45], use of centralized model of computation has been a common is-

sue. It has been used, either to make HE based approaches compatible by perform-

ing heavy computations in a centralised entity like Base Station (BS) which com-

16

putes the aggregated value or depending on a trusted authority for key-generation.

Very few of the works present, carry out all the operations in a purely decentralised

form. Most of the data-obfuscation based strategies to our knowledge fall in this

category.

Collaborative-Computation: Most of the HE based works follow a central-

ized model of computation for computing the aggregated value. Such centralized

approaches incurs some common issues like single-point-of-failure where BS be-

comes unavailable due to heavy network traffic which effects reliability of real

time data computation. Such scenarios can be avoided by collaborative compu-

tation of all nodes in the network or using the concept of SMPC. For example,

[47] proposes two algorithms CPDA(Cluster-based Private Data Aggregation) and

SMART(Slice-Mix-AggReGaTe) for collaborative data aggregation while preserv-

ing data privacy, but they still rely on a centralized entity like BS for computing

the final aggregated value. The work [54] realizes SMPC in a decentralized envi-

ronment. However, it relaxes the original problem by assuming that the data can

be shared through a secured channel between any pair of nodes within the network

which is not realistic for low-power wireless systems like IoT/WSN. Even many

DO based works use collaborative computation. Work present in [50] uses a clever

application of splitting its data into chunks to achieve PPDA. However it depends

on a TTP for system initialisation.

2.3.3 Drawbacks of the prior works

Fault-tolerance: Fault-tolerance is a very significant issue which is not considered

in most of the above mentioned and other existing PPDA works. Sudden drops of

multiple nodes quite common in IoT systems and may result in wrong computation

of the result in rigid strategies like PPMP. The work [55] considers fault tolerance

in Smart Grids, however it relies on TTP in case a node drops. In our work, we

17

try to keep the protocol flexible and fault-tolerant so that they can quickly detect

and rectify the result.

The work [46] is the one that is closest to our the approach proposed in our

current work. It considers a purely unsecured environment and operates in a de-

centralized fashion. The execution of the protocol does not rely on any third party.

However, PPMP assumes a specific circular arrangement of the nodes. During the

bootstrapping phase each node is supposed to share the values only to its adjacent

nodes in a specific order which is difficult for maintaining such order in IoT settings.

Our proposed protocol does not exploit any such specific ordering. Also PPMP

uses a prime number p during the initialisation phase and the algorithm multiplies

all the secret values and applies modulo(p2) over the product. Thus p is supposed

to be greater than aggregated value. However as mentioned such situation can

be avoided is assuming a large prime number. However in resource constraint de-

vices like WSN/IoT, operating over such large numbers increases computational

complexity.

Communication: The works based on MPC and DO mostly exploit heavy

communication among the nodes. Naturally, message complexity in such solutions

goes very high as (O(n2), n being the number of nodes). In our work, we do not

compromise the message complexity of our DO based scheme. Instead of avoiding

we exploit the recent advancements in CT based strategies to efficiently achieve

the necessary communication among the devices. As far as the knowledge of the

authors goes, this is the first attempt when CT has been exploited to achieve DO

based PPDA.

System-implementation: Finally, most of the above mentioned works al-

though claim to be suitable for IoT systems, very rarely implement in an IoT-

system. Rather, most of these works either provide theoretical study with mathe-

matical proofs. Some of the works show the implementation in high-end computers

18

or RaspberryPi’s (V3) which cannot be claimed as resource-constrained IoT-device.

19

Table2.1 summarizes the pros and cons of all the above mentioned works with

the pros high-lighted using gray color.

Works Class
Centralized

/Decentarzlied

Use of
Trusted

Third Party Communication Computation
Implementation

in IoT-system
PEPPDA

Homomorphic
Encryption

Centralized Yes Less Efficient Less Efficient Yes(Smart Grid)
3PDA Centtralized No Less Efficient Less Efficient Yes(Smart Grid)
P2DA Centralized Yes Efficient Efficient Yes(Smart Grid)
LVPDA Centralised Yes Efficient Efficient Yes
LPDA Centralised Yes Efficient Efficient Yes
CPDA

Multi-Party-
Computation

Centralised No Less Efficient Less Efficient Yes(WSN)
SMART Centralised No Efficient Less Efficient Yes(WSN)
SMPC Decentralised No Less Efficient Less Efficient No
PPMP Decentralised No Efficient Efficient No
HWAPPA

Data-
Obfuscation

Centralised Yes Efficient Efficient Yes(Smart Grid)
DPPDA Decentralised No Less Efficient Less Efficient Yes
PEDA Centralised Yes Less Efficient Less Efficient Yes(Smart Grid)

LiPi Decentralzied No
Very efficient,

uses of CT Efficient Yes

Works Class
Use of

Cryptography
Fault-

Tolerance Latency
Energy

Efficiency

Degree of

Collusion

Tolerated
PEPPDA

Homomorphic
Encryption

Yes No Less Efficient Efficient Not discussed
3PDA Yes Yes Less Efficient Less Efficient Not discussed
P2DA Yes No Less Efficient Less Efficient Not discussed
LVPDA Yes No Efficient Efficient Not discussed
LPDA Yes No Efficient Efficient Not discussed
CPDA

Multi-Party-
Computation

Yes No Less Efficient Less Efficient Not discussed
SMART Yes No Less Efficient Efficient Not discussed
SMPC Yes No Efficient Efficient Not discussed
PPMP Yes No Efficient Efficient Very less
HWAPPA

Data-
Obfuscation

Yes No Efficient Efficient Not discussed
DPPDA No No Efficient Efficient Not discussed
PEDA Yes No Less Efficient Less Efficient Not discussed
LiPi No Yes Very effciient Very efficient Highest

Table 2.1: Summary of the existing approaches to achieve Privacy-Preserving Data

aggregation in IoT/WSN systems.

20

Chapter 3

Practical Byzantine Fault

Tolerance in IoT

3.1 Introduction

Human civilization is tending to depend more on the use of smart systems. Tech-

nologies such as Internet-of-Things (IoT) and Wireless Sensor Networks (WSN)

play crucial roles in building these smart systems. They operate through de-

centralized collaboration among a large number of independent units, commonly

known as IoT devices. For instance, in automated surveillance systems [56] the

independent devices equipped with image/video/sound sending capability are in-

stalled at various places, covering the area under surveillance, to collaboratively

monitor the area. Similarly, in a structure monitoring system [57], many devices

having appropriate sensing capabilities are installed covering the vital parts of

the structure (e.g., a bridge or a building), where the status of the structure is

obtained through a collaborative effort among all these devices. Similar scenar-

ios can be obtained from other smart systems such as smart-grid systems [58],

intelligent-transportation systems, industry-4.0, etc.

21

Unfortunately, any IoT device in any such smart system is susceptible to various

unexpected issues, e.g., software errors, failures, or even various types of attacks.

These issues can significantly disturb the overall system integrity of a smart system

and may also result in false reporting while interacting with the end-users which

may lead to catastrophic effects. For instance, while monitoring a critical struc-

ture, a compromised IoT device may wrongly report the status of a component.

Similarly, in a flock of UAVs with some mission, such issues may cause some of

the UAVs to deviate from the target which in turn may lead to an overall failure

and significant loss.

Fault-tolerant consensus protocols[24] play a vital role in establishing the trust-

worthiness of a system in spite of the chances of node failures. Such failures can be

either non-Byzantine or Byzantine. Consensus protocols to handle non-Byzantine

failure assume a weak failure model, e.g., simple fail-stop or node crash, and are

mostly used in systems within a controlled environment, e.g., data center, where

they are operated by authenticated users. In contrast, consensus protocols capa-

ble of handling Byzantine failures [59], entail more comprehensive failure models

where nodes can be compromised and have malicious intent behind participation.

They are applicable for both open and decentralized systems, e.g., BlockChain

[25, 60].

Fast consensus has been addressed by many prior works in the context of

IoT/WSN, using aggregation protocols[9]. However, these works do not consider

any failure possibilities. Moreover, some of the works realizes the well-known

consensus protocol Paxos. But, it considers only non-Byzantine faults. Support

for Byzantine failures to build a trustworthy IoT system would be an inevitable

issue in near future. However, existing efforts to realize Byzantine fault tolerance in

IoT/WSN systems are mostly theoretical and simulation-based. There is almost no

work so far that attempts to practically achieve the same for resource-constrained

22

IoT/WSN systems.

Unlike handling non-Byzantine failures, the challenges in dealing with Byzan-

tine failures are quite different and much harder to address. The earlier work shows

how a network-wide max finding operation can be exploited to efficiently manage

non-Byzantine failures in IoT. However, in contrast, to manage Byzantine faults

the devices need to share the actual opinion/messages with each other to come to

a conclusion which naturally involves multiple rounds of many-to-many/all-to-all

data-sharing among the nodes making the protocol quite complex and heavy for

resource-constrained IoT/WSN systems. In this work, we exploit the recent ad-

vancements in flooding-based transmission communication strategies [9] to build

an efficient solution for this problem.

The primary contribution of the work is summarized below.

• An efficient solution to achieve Byzantine fault tolerance for resource-constrained

IoT systems leveraging multi-flooding based communication framework has

been proposed.

• Special design considerations have been adopted to make the strategy scal-

able and optimize the overall completion time and energy consumption in

the devices.

• The proposed design has been implemented for ARM architecture based

sensor devices.

• The performance of the protocol has been evaluated in both simulation as

well as emualtion.

23

3.2 Background

A class of existing solutions to mitigate the existence of Byzantine nodes exploit the

computational capability of the participating nodes. However, a typical IoT/WSN

device mostly lacks enough processing capability to realize these strategies. The

approach shown in PBFT [27] demonstrates how to deal with the Byzantine nodes

only based on inter-device communication. Unfortunately, limited energy availabil-

ity in the tiny devices used in IoT/WSN systems heavily restricts their communi-

cation ability too. In addition to this, uncoordinated transmissions in traditional

asynchronous communication-based protocols in IoT/WSN systems, waste a lot of

throughput and energy in the devices due to collisions among the packet making

it even harder to meet the communication requirements to realize PBFT.

Recently there has been quite a lot of developments in flooding based data

transmission strategies [9]. These works demonstrate high reliability and low-

latency communication in systems comprising of a large number of nodes. In the

current work, we exploit these strategies to achieve PBFT in IoT/WSN systems.

In the following, we first provide a brief description of about PBFT. A prime

part of the realization of PBFT in IoT/WSN systems needs to deal with massive

data sharing among the participating nodes. Therefore, in this works we exploit

flooding protocols to fulfill the need. We explain our need and proposed strategy

in the design as detailed in section 4.3.

3.2.1 Practical-Byzantine Fault tolerance (PBFT)

Under non-Byzantine failures, the query under consideration can be first shared

with all the nodes in the system, and then replies can be collected from these nodes.

Since the nodes are not supposed to reply incorrectly, the reception of at least

50% of the participants in the systems would ensure a consensus to be reached. In

24

contrast, under Byzantine failures, a node forms the notion of consensus through

discussing the issue with the other nodes in the system. Specifically, in PBFT,

for a certain query, how many other nodes are replying with the same answer is

considered to be a very important issue. Formally, a quorum is defined as the

minimum number of nodes to pass a decision in an assembly. In PBFT, a node

to achieve consensus amidst various types of failures needs to reach a quorum.

The minimum number of nodes necessary to be present in a system to enable

every node to reach a quorum in spite of the presence of at most f non-Byzantine

failures is 2f + 1 [27]. Conversely, under non-Byzantine failures, for N number of

nodes the quorum size is N
2
+ 1. Under Byzantine failures, in contrast, quorum

size is 2N
3
+ 1 [61].

A node in the system requesting consensus is referred to as a client node.

The request from the client node is conveyed to a designated primary node which

triggers the consensus process composed of five phases as depicted in Fig. 3.1(a).

A simplified description of these phases are given below.

1. LAUNCH: A client node (c) initiates the process by sending a request

message Req to the primary node.

2. PRE-PREPARE: The primary node, broadcasts Req to all the participat-

ing nodes.

3. PREPARE: All the nodes in the system, validate the correctness of the

request in Req and broadcast a Prepare message in the system conveying

their opinion about it.

4. COMMIT: In this phase every node first individually decides whether it

has reached quorum or not based on the number of alike messages received

in the previous phase. If the number of alike messages is more than 2f + 1 ,

25

a node decides to go for commit otherwise not. In this phase also the nodes

their decisions with each other.

5. EXECUTE REPLY: In this post COMMIT stage its checked globally how

many nodes in the system has achieved consensus. A client also consider its

request as in consensus if it received f + 1 similar decisions. In case 3f + 1

nodes have reached quorum, a global consensus is assumed to be achieved

for Req. However, when consensus is not achieved, it goes to the VIEW-

CHANGE phase as briefed below.

6. VIEW-CHANGE: In PBFT, the three consecutive phases PRE-PREPARE,

PREPARE, and COMMIT together are considered to be a view formed un-

der the leadership of the current primary node. If a certain view fails to

result in consensus, first, a new primary node is decided based on a globally

defined rule. Next, the new primary node starts the change of view and

restarts the process with the PRE-PREPARE phase. With f number of

traitors in the system, in the worst-case maximum f + 1, view formations

may be needed to achieve a consensus.

In the following, we describe the design of our protocol to achieve Byzantine

consensus with the help of combination of several communication mechanisms. We

assume the sink node itself to play the role of a client as well as a primary node.

3.3 Design

The three phases employed by PBFT are pictorially explained in Fig. 3.1(a). In

the PRE-PREPARE phase, the primary node carries out a network-wide one-to-

all sharing of the query message while both the PREPARE and the COMMIT

phase execute a network-wide all-to-all interaction among the nodes to exchange

26

PRE-
PREPARE PREPARE COMMIT

Multi-view consensus

PBFT

PSBFT

Single view consensus
Launch

PRE-PREPARE PREPARE

COMMIT

Consensus
achieved?

Execute

No

(a)
1

2 3

5

4

6

Yes

One-to-
all

many-to-
many

many-to-
many

(b)

(c)

Figure 3.1: Execution of PBFT. Part (a) shows the flow diagram of a standard

PBFT execution. Part (b) and (c) show the timing diagram of PBFT without

optimizations and with optimizations, respectively.

the opinion regarding the message as well as check how many nodes could reach

the consensus, respectively. All these phases thus involve an extensive number of

message passing among the nodes. Moreover, possible change of view may happen

several times which would bring many repetitions of these three phases. Under

in-parallel time-slotted concurrent transmission, although communication happens

in a very compact form, it’s quite expected that a naive realization of PBFT may

still drain a considerable amount of energy in low-power IoT/WSN-devices. To

optimize the performance we make an in-depth study of the Byzantine consensus

process in the context of IoT and come up with a set of observations as summarized

A

B

D

C

Transmission Reception

Initiator

Hop 1

Hop 2

Hop 3

Time

Ra Rb Rc Rd TL

HD Ra TL

HD Ra TL Ra Rb TL

Ra Rb TL

Ra Rb TL

Ra Rb TL

Ra Rb Rc TL

Ra Rb Rc TL

Ra Rb Rc TL

Ra Rb Rc Rd TL

Ra Rb Rc Rd TL

Ra Rb Rc TL

Ra Rb Rc TL

Ra Rb Rc Rd TL

Ra Rb Rc Rd TL

Ra Rb Rc TL

Ra Rb Rc Rd TL

Ra Rb Rc Rd TL

Ra Rb Rc TL

Ra Rb Rc TLRd

Rd

HD

HD

HD

HD

HD HD

HD

HD

HD

HD

HD

HD

HD

HD

HD

HD

HD

HD

HD

Figure 3.2: Execution of PREPARE Phase using All-to-All Data Dissemination

27

below. We use these findings to design our final protocol.

3.3.1 All-to-all vs many-to-many

The purpose of the data sharing in the PRE-PREPARE and COMMIT phase in

PBFT is to ensure that every node in the system reaches the quorum, i.e., to enable

every node to obtain the required number of alike messages. From the definition

of the quorum size for Byzantine consensus, it can be observed that strict all-to-

all data sharing may not be always necessary. Rather, it depends on the actual

number of traitors or faulty nodes. In a system with N nodes, although PBFT can

support max f traitors, where N = 3f + 1, the actual number of traitors present

in the system may be much lesser than f , say k (k < f). In this situation, the

necessary size of the quorum is 2k + 1. Therefore, to reach quorum it’s enough to

ensure that each node receives at least 2k + 1 alike messages.

Note that for k traitors, the number of distinct messages/opinions that may

differ from each other would be maximum of k. Thus, by the pigeonhole principle,

it can be said that a node would require to wait for messages from at max 3k + 1

distinct nodes which ensures 2k+1 out of them are from the non-traitor node, hence

alike. For a random distribution of k traitors, a node may need to wait for even less

as it may receive 2k + 1 alike messages much earlier. Thus, knowledge regarding

the number of traitors as well as their distribution in the system can be exploited

for faster convergence. Based on this concept we simplify the PREPARE-phase.

3.3.2 Restricted behaviour of the traitors

Under traditional wired communication systems, unicast is the default communi-

cation mode. A traitor node in unicast gains enough scope to communicate differ-

ently to each of its neighboring nodes, as a response to a given query. In a wireless

28

medium, any communication happens by default in broadcast mode. However, un-

der asynchronous communication broadcasts are often abstracted as unicast which

again can be exploited by the traitors to create confusion. In contrast, flooding

protocols explicitly uses a broadcast-driven communication framework to achieve a

faster spread of information and speed up convergence. However, broadcast-based

communication forces the traitors to behave consistently to all their neighbors.

In addition, if a traitor node tries to share different data in consecutive or

different time-slots, it creates visible disturbances in the process and hampers the

performance of the protocol which enhances the chance for it to get detected.

This, in turn, refrains a traitor from even tweaking with the data while for-

warding. In-parallel data dissemination, thus, in general, naturally restricts the

Byzantine capability of a traitor. However, note that the traitors can freely pass

wrong/imperfect opinions in their own packet/slot.

Based on the above-mentioned observations, we optimize the PBFT consensus

protocol as described next.

3.3.3 Protocol

The proposed protocol is depicted in Algo. 1. We design the PRE-PREPARE

phase using an instance of one-to-all dissemination. The query under consideration

is disseminated by the initiator node (primary) to all the other nodes in the system.

Execution of one-to-all flooding, in general, happens very fast over a large network

setting. Subsequently, the nodes start the PREPARE phase where all nodes share

their opinion regarding the query with each other. An instance of the protocol

MiniCast is used for this phase.

The primary node makes an assessment of the traitor nodes in the system and

shares a value k in the query packet indicating the approx no. of the traitors.

A random distribution of the traitors is assumed. Based on k, the initiator also

29

derives the value of a vital parameter of MiniCast known as NTX and shares the

same in the query packet. An appropriate value of NTX is used to restrict the

execution of MiniCast for a limited duration only upto getting enough opinions

to reach quorum in every node. This is detailed in the next section. During

PREPARE phase, every node keeps track of how many alike messages are received

(in variable nAlike in Algo. 1).

In the COMMIT phase, it’s enough to share a single bit of information from

each node indicating whether the node could reach the quorum in the preceding

PREPARE phase. In particular, a node sets a flag in case nAlike ≥ 2k + 1. We

use an aggregation protocol for this phase. Aggregation protocols originally uses a

single flag bit for every node to keep track of how many nodes have contributed to

an aggregation process. The execution stops when all the nodes have contributed

successfully. To serve our purpose, we add one more flag bit for each node which

is set in case the corresponding node reaches the quorum. The use of just two bits

of contributions from each node allows the whole COMMIT phase to run very fast

even when the number of nodes is large.

At the end of the COMMIT phase, every node in the network gets to know how

many nodes in the system have reached the consensus (captured in the variable

nCflags in Algo. 1). In case nCflags ≥ 3k+1, a global consensus is assumed to

be achieved. If consensus is not achieved, there can be two distinct reasons. It may

be either due to a faulty primary node or due to insufficient spread of information

caused by limited execution of MiniCast.

Since exploring the exact reason is not possible, at this stage we first repeat

the PREPARE phase with NTX one more than the last used value (i.e., NTX+1).

We observe the change in the COMMIT phase. If considerably more number of

nodes are found to be reaching quorum with the increased NTX, it indicates wrong

assessment of the traitors in the previous round. To rectify the same we repeat

30

the process until a global consensus is reached. We save this new NTX and use it

for all the rest of the rounds. In case significant improvement is not visible after

increasing NTX by 1, the nodes go for changing the primary node and repeat at

max k+1 number of times (VIEW-CHANGE) to reach consensus.

Fig.3.4(a) shows the execution of different phases of PBFT(referred to as PBFT

itself later) through the naive implementation, and Fig. 3.4(b) shows a modi-

fied/optimized version of naive PBFT. We refer to our proposed version as PS-

BFT (Practical Synchronous Byzantine Fault-Tolerant Protocol). Moreover, Fig.

3.1(b) and Fig. 3.1(c) show the timing diagram of PBFT and PSBFT respectively.

The execution of MiniCast for the PREPARE phase in PSBFT in a network con-

sisting of three hops is depicted in Fig. 3.2. One representative node from each

layer is considered. Transmissions in MiniCast happen in the chain of packets.

The beginning and start of a chain are indicated by the packets HD and TL. It

starts with the initiator node transmitting the data packet received by the first-

hop nodes. The chain transmitted by the first-hop nodes triggers the transmission

by the second-hop nodes and so on.

The number of times a chain is transmitted and hence, received by a node is

controlled by the parameter NTX. NTX, thus, governs the degree of spread of the

data from each node. In the naive implementation of PBFT we set NTX as the

maximum value necessary in a network, while in PSBFT, NTX is ideally set to the

minimum value which is enough for every node to reach the quorum. Appropriate

tuning of the value of NTX brings a huge difference in the performance as depicted

in Section 4.4.

We experiment with the implementation of MiniCast in C language on ARM

architecture based sensor devices over various simulation configurations in MSP-

SIM(TinyOS) as well as two Emulation environments containing 24 and 45 nodes

respectively. We refer the first scenario as Emulation-1 and the second one as

31

Emulation-2. Figure 3.3 highlights the rise in the network coverage with NTX

for different network configurations. It is observed from all these results that to

achieve 100% network coverage we need to set the value of NTX above 7. But

based on the number of nodes and the simulation area in MSPSIM, the value of

NTX required to get up to 70% coverage is quite less. Fig. 3.3 (a)-(c) shows the

results in various simulation settings. The same trend is visible in both emulation

settings as shown in Figure 3.3 (d). Its also visible that, the exact relationship

depends on the specific network setting. Therefore, deciding the correct value of

the NTX happens to be a nontrivial task which we describe next.

Emulation-
1

Emulation-
2

Figure 3.3: Percentage of data received by the nodes with the variation of NTX.

3.3.4 Restricted data-sharing

An iteration of a data-sharing process executes in multiple rounds of data recep-

tion. In a single reception round, any given node acquires data from a certain

subset of the nodes. The maximum number of reception rounds is the same as the

value of NTX. In the first reception round, a node would receive the data from

its nearby nodes. In the next round onward, it receives data from nodes at higher

hop-distances from it. We call this sequence of a number of data elements received

in each of the reception rounds as reception-profile. After a sufficient number of

reception rounds, a node receives data from all the nodes in the system. The

reception-profile hence substantially depends on the structure of the underlying

network. It also varies based on the hop-distance of a node w.r.t. the initiator of

32

Pr
im

ar
y

R
ep

lic
as

PRE-
PREPARE PREPARE COMMIT

replies > replies >

replies >

Pr
im

ar
y

R
ep

lic
as

replies >

replies >

replies >

(a)

(b)

PRE-
PREPARE PREPARE COMMIT

Figure 3.4: (a) Execution of PBFT using flooding based communiction

primitives: Initially the primary/initiator node forwards the Pre-Prepare request

to all nodes using one-to-all. Afterward, all phases are achieved using broadcast

driven data-sharing. Proposed Optimised execution via PSBFT: Initially the

Pre-Prepare is performed using one-to-all flooding. Afterward, PREPARE phase

is using Minicast primitive, which eventually results in all-to-all data sharing.

Moreover, the COMMIT/VIEW-CHANGE Phase is using in-network aggregation

protocol.

33

Algorithm 1 PSBFT

1: LAUNCH:
2: Request: Client forwards request Req to the primary p node.
3: Verification: Primary node verifies the validity of Req.
4: Make Packet: Primary node prepares a packet prepare including the query, NTX,

and a traitor assessment k.
5: PRE-PREPARE:
6: Disseminate: Primary broadcasts prepare to all nodes
7: for all nk ∈ N do ▷ For every node
8: Participate actively in execution of the instance of one-to-all data flooding pro-

tocol to disseminate the packet prepare to all the nodes in the network.
9: end for
10: PREPARE:
11: Set ntx=0
12: for all nk ∈ N do ▷ For every node
13: while ntx ≤ NTX do
14: Transmission:
15: Prepare the packet with reply.
16: Broadcast the packet to the neighbors.
17: Wait for reception of the packets from the neighbors.
18: Reception:
19: Collect the opinions from the nodes received so far.
20: Consensus:
21: Count number of alike answers in nAlike.
22: if nAlike ≥ 3k + 1 then
23: Set internal state as “Reached quorum”
24: end if
25: ntx++.
26: end while
27: end for
28: COMMIT:
29: for all nk ∈ N do ▷ For every node
30: Carry-out many-to-many data aggregation
31: Set the flag to be ‘1’ in case the consensus is achieved otherwise set it to ‘0’.
32: end for
33: VIEW-CHANGE:
34: for all nk ∈ N do ▷ For every node
35: Count the number of flag bits received in nCflag
36: if nCflag ≥ 3k + 1 then
37: Set state as “Consensus achieved”
38: else
39: Decide the next initiator in the sequence OR increase NTX = NTX+1
40: Go for view change: Repeat from Step 6.
41: end if
42: end for

34

the data sharing process.

Setting a correct value of NTX in the PREPARE phase is very crucial. A

larger value of NTX wastes time and energy in the nodes, while a lower value of

NTX may be insufficient to reach quorum in many nodes. The knowledge of the

reception-profile of each node in the system can be used to properly derive the

appropriate value of NTX. However, collecting this information from all the nodes

in the network would be a time-consuming task. We simplify the process based on

the following observations.

Reception-profile of nodes: A dissemination process starts from the initia-

tor node and proceeds hop-by-hop. Therefore, the time point when the process

reaches a node that is located far away from the initiator, the node gets a lot

of data items in comparison to the first reception at a node located close to the

initiator. Thus, higher hop-distance of a node from the initiator implies a larger

number of distinct messages (from different nodes) during each reception-round.

Let us consider reception-profile (cumulative over reception number) of a node x

at hop-i as, < xi1, xi2, xi3, ..., xintx >, while the same for a node y at hop-j be

< yj1, yj2, yj3, ..., yjntx >. If j ≥ i, we would see < xi1 ≤ yj1, xi2 ≤ yj2, xi3 ≤
yj3, ..., xintx ≤ yjntx >. Based on this it can be inferred that the reception-profile

of the first-hop nodes would be good enough to decide the global NTX.

Reception-profile over iterations: In MiniCast, due to TDMA based sep-

aration of packet-transmissions by different nodes, we observe that the chance for

a node to fail in receiving the data at a specific slot is quite independent than oth-

ers and hence, the reception-profile of a node varies quite less with the iterations.

Conversely, the reception-profile data over the nodes show quite stable behavior.

Fig. 3.5 shows the comparison of the cumulative reception-profiles of certain

randomly selected nodes during the execution of MiniCast in Emulation-1 and

Emulation-2 environments. It is quite visible that in general with increase in

35

hop-distance the accumulation of data at each reception count goes higher. The

experiment is conducted for at 1000 iterations and the standard deviation values

are reflected through the error bars in the graph. The results demonstrate quite a

low variation of the reception count over different iterations.

Algorithm 2 NTX assessment

1: BEGIN:

2: Initiator starts the All-to-all/Many-to-Many sharing with a large NTX value.

3: for all nk ∈ N do ▷ For every node

4: for i gets 1 to n do ▷ Nodes locally store

5: Reception Count[nk].push back(#Nodes received)

6: end for

7: end for

8: FOLLOW: All/Many-to-one data sharing ▷ Network View

9: for all nk ∈ N do

10: Each node sends its Reception Count list to Initiator

11: end for

12: Optimal NTX: Required reception/transmission count to handle f failures in any

network

13: NTX ← 0

14: for all nk ∈ N do ▷ For every node

15: for i gets 1 to n do

16: if Reception Count[nk][i]≥2f+1 then

17: NTX ←max(NTX, i)

18: end if

19: end for

20: end for

Based on the above observations and their experimental evidence we design

36

(a)
Emulation-

1

(b)
Emulation-

2

Figure 3.5: Percentage of Data Received for nodes present at successive hop dis-

tance

an algorithm (Algo. 2) to assess the NTX for the PREPARE phase. We invest

two rounds of MiniCast for this part. In the first round, we set the NTX quite

large based on the diameter and size of the network so that every node can derive

its reception profile. In the next round, the reception-profiles from the first-hop

nodes only are collected at the initiator. Note that this process is invoked only

once during the bootstrapping phase and is independent of the PBFT process.

Successful completion of the process enables the initiator node to calculate the

correct NTX node based on the assessment of the number of traitors. In particular,

for k number of traitors, the initiator calculates the NTX as the minimum value of

m for which the
∑i<m

i=0 (xi) ≥ (3k+1), i.e., sufficient for collecting enough messages

from the surrounding to reach quorum in the nodes.

37

3.4 Evaluation

We implement both PBFT and PSBFT in C language. We simulate the protocols

in MSPSIM (TinyOS). We also experiment with the implementations in the two

emulation environments i.e., Emulation-1 and Emulation-2 composed of 24 and 45

802.15.4 compliant radio motes, respectively. The success of the PSBFT largely

depends on the right selection of NTX for the PREPARE phase. Due to space

limitations we do not include the detailed study of the NTX assessment part in this

paper. However we use the outcome of the NTX assessment for different network

setting for further experiments.

3.4.1 Metrics

To compare the performance of PBFT and PSBFT, we use the following two

metrics.

Latency: It is the time taken for a process to achieve consensus. The value is

calculated in each node and averaged over all the nodes and all the iterations.

Radio-on time: It is the total time necessary for a node to keep its radio-on

to complete the execution of the protocol. The value is calculated in each node and

averaged over all iterations and nodes. This value can also be used to understand

the energy consumption of a device also.

3.4.2 Results

PBFT and PSBFT are compared under the presence of the Byzantine traitors

under various network configurations through simulation as well as emulation.

The number of traitors is varied from zero to the maximum number that can be

supported by the algorithm (i.e., one-third of the number of nodes). Figure 3.6

shows the comparison results for a 70 node simulation for different deployment

38

Figure 3.6: Latency and Radio-on-time for 70 node simulation over various network

diameter

(i) Emulation-1

(ii) Emulation-2

Figure 3.7: Latency and Radio-on-time for Emulation-1 and Emulation-2

39

areas. Figure 3.7 shows the comparison results in Emulation-1 and Emulation-2

in terms of latency and radio-on time.

PSBFT is always found to be performing much better than PBFT even when

there are many traitors in the system. In summary, in a 70-node network dis-

tributed over 1000 × 1000 m2 simulation area, PSBFT performs on average 55%

and up to 73% faster and consumes on average 53% and up to 71% lesser radio-

on time in comparison to PBFT for a wide variation in the number of traitors

randomly distributed over the network. The same experiments are repeated in

emulation envrionments as well. In Emulation-1, PSBFT is found to be perform-

ing on average 51% and up to 55% faster while consuming on average 48% and up

to 53% lesser radio-on time in comparison to PBFT. Similarly, in Emulation-2 PS-

BFT performs on average 68% and up to 80% faster while consuming on average

66% and up to 78% lesser radio-on time in comparison to PBFT.

3.5 Summary

Increasing dependence over the smart-systems not only bring ease in living but

also introduces the possibility of unexpected problems because of the presence of

smart traitors in the system. Existing consensus mechanisms for IoT/WSN can

manage only non-Byzantine faults. To the best of our knowledge, the current

work is the first attempt to efficiently realize Byzantine fault resilient consensus

strategy for low-power IoT/WSN systems. In general, to build resilience against

Byzantine faults, the nodes need to carry out extensive data sharing to exchange

opinions with each other. Therefore, the traditional asynchronous transmission-

based communication mechanism does not fit well to solve this problem. In this

work, we take the help of time-slotted based flooding data sharing strategies to ef-

ficiently realize the well-known Byzantine fault-tolerant consensus protocol PBFT

40

for IoT/WSN systems. Our evaluation results show substantial improvement in

the latency and energy consumption (radio-on time) in our proposed strategy over

naive implementation of PBFT.

41

Chapter 4

Multi-party computation in IoT

4.1 Introduction

An IoT/WSN-assisted smart-systems, e.g., Wireless-Body-Area Networks [62],

Smart-Health-Care [63], Intelligent-Transportation [64, 65], Smart-Grid [66], etc.,

functions through a massive decentralized collaboration among a large number

of IoT/WSN devices. Sharing of data among the devices in such systems play a

pivotal role. Due to close interaction of these systems with human-life, the data

sensed by the devices may have direct relationship with private/sensitive informa-

tion. For instance, in an Advanced Metering Infrastructure (AMI) [67] system, the

real-time electricity consumption data collected by a Smart-Meter (SM) from a

house can precisely infer the activities inside the house and hence, cause breach

of consumer privacy [68]. Such privacy concerns fundamentally create a severe

bottleneck in free use of IoT. However, the aforementioned privacy concerns would

fundamentally create severe bottleneck in freely exploiting the technology.

To address the above mentioned issue, IoT applications mostly tend to use var-

ious forms of aggregation operation instead of directly using the raw values sensed

by the edge devices. For instance in an AMI system, its enough for a control cen-

42

ter (sink) node to know the aggregate (sum) of the electricity consumption of the

individual houses over an area. However, deriving even the aggregated values in

a privacy preserving manner is not straightforward. Traditional cryptographic so-

lutions for secure communication facilities are also alone not sufficient to achieve

Privacy-Preserving-Data-Aggregation (PPDA). There has been a significant re-

search efforts to devise efficient solutions in general. The issue becomes more

challenging considering especially under IoT-setting because where a significant

fraction of the devices lacks both enough computation capability as well as energy.

Traditional cryptographic measures like encryption/decryption, can only secures

data in the transition and hence does not solve the problem in discussion. However,

they do not provide any security when data are used in collaborative computation.

Therefore, we need some other techniques apart from these which allows to carry

out the same computation in decentralised fashion keeping data privacy intact. A

significant fraction of the existing approaches, to achieve PPDA use Homomor-

phic Encryption (HE) [69] which enables computation of aggregation operations

directly over cipher-text. This alleviates the requirement of the deciphering of the

data by the intermediate forwarding nodes in a system and hence compute the

partial aggregation in a privacy preserving way. HE has been employed in a quite

good number of works to achieve PPDA [41, 42, 43, 44, 45]. However HE requires

huge computation which cannot be efficiently supported by resource-constrained

IoT-devices. In most of the works employing HE, the sink/final destination node

needs to know the key to decipher the final aggregation result. This enables the

sink nodes to decipher the individual cipher-text of different node. To resolve these

issue, various approaches have been taken. Data-Obfuscation (DO) by combining

random noise with the secret values has been also a common way in many prior

works to hide data by each of the nodes. However, most of these works depend

on some Trusted Third Party for sharing the random noise as well as keys which

43

makes these strategies fundamentally weak. A set of existing works exploits col-

laborative computing to hide the private data in the form of Secure-Multi-Party

Computation (SMPC)[12, 13]. Shamir’s Secret Sharing has been used in many

works to realize SMPC through sharing of the secret values in part by the nodes

in the first round and then combining the data in the second round to calculate

the final aggregation. However, most of these works use extensive data sharing

among the nodes which makes them unsuitable for IoT-system.

In this work we propose a novel decentralized lightweight strategy based on

collaborative data obfuscation which does not depend on any Trusted Third Party

(TTP) or any centralized entity for any purpose and takes no help from cryp-

tographic mechanism to achieve the goal. Most of the works on PPDA so far

are either theoretical or show the concept in simulation platform. Very few of the

works try to show implementation in real devices. However, all these works mostly

use Asynchronous-Transmission (AT) to achieve all the data sharing requirements

among the nodes. To more efficiently fulfill the requirements in this work we design

the proposed strategy in a way that can exploit the recent advances in Concurrent-

Transmission (CT) [9] based mechanisms. In a nutshell, in this work we design,

implement and rigorously test a practical solution for PPDA in IoT system.

The main contributions of the proposed work are summarized below -

• A lightweight solution for PPDA for resource-constrained IoT-systems with

unsecured communication links, has been designed.

• To make it self-sufficient (no use of TTP) a separate module of the protocol

is also designed and analyzed for pair-wise key-exchange among all pair of

nodes. We acheive the this goal using on;y single round of all-to-all data

sharing communication mechanism.

• The proposed design is implemented in C language for 802.15.4 compliant

44

radio devices and rigorously tested through simulation and emulation plat-

forms.

• We also implement two other state-of-the-art PPDA strategies in our frame-

work and rigorously compare the performance with our proposed protocol.

4.2 Background

Secure Multi-Party Computation (SMPC), a sub-field of cryptography [48], deals

with the goal of computing a joint collaborative function of the secret/private

values for multiple parties while preserving the privacy of these values. Shamir’s

Secret Sharing (SSS) scheme [49] demonstrates a way to achieve SMPC through

a clever application of Polynomial Interpolation. In a nutshell, a secret value is

decomposed into a certain number of parts called shares and each share is commu-

nicated to different node through a secure channel. Thus, when finally, the data

from all the nodes come together, the sum of all the secret values are computed

while the original values and their origins remain unknown. SSS and other conven-

tional SMPC protocols work well in case of semi-honest adversaries, but it assumes

a secure communication link between any pair of nodes in the whole network as

well as rely on trusted third-parties for key generation as they use asymmetric key

based cryptography. Such assumptions are realistic in usual wired network, but

are not suitable for wireless resource constrained IoT/WSN systems. Generally,

communication plays a significant role in determining the performance of any MPC

protocol as each protocol requires interactions between the participating entities,

and thus, we believe that having an efficient and reliable communication infras-

tructure is valuable. The performance of any MPC protocol considers the number

of interactions between the participating entities as one of important factor for

protocol performance, and thus, we believe that having an efficient and reliable

45

P2()P2() P2()HDR P1()P1() P1() Pk() Pk() Pn() Pn()Pn()Pk() TRL

Contributed by Source Node 1 Contributed by Source Node 2

Q2HDR Q1 Qk Qn TRL

Contributed by Source Node k Contributed by Source Node N

()

Figure 4.1: MiniCast chain structure during (a) sharing (b) reconstruction round.

HDR and TRL represent the header and the trailer packets in the chain, respec-

tively.

communication infrastructure is valuable. Under traditional asynchronous commu-

nication based approach achieving many-to-many interaction with high reliability

as well as real-time data-gathering / aggregation is hard because of uncoordi-

nated transmissions and hence repeated collision among the packets. Under such

many-to-many communication storm, possibility of recurring collision also causes

abruptly varying latency for a single packet to get received by different nodes in

the system which enhances the chance of leakage of the information and also the

number of re-transmissions [70]. Considering all these issues, in this work, we pro-

pose to use the capture effect and constructive interference based communication

primitives where the transmissions are coordinated and inherently provides the

supports for high reliability coupled with low-latency even for many-to-many data

sharing. In particular, we select an existing many-to-many data sharing protocol

MiniCast for serving as a base. In general, any other efficient strategy for many-to-

many/all-to-all data sharing can be used as a base. However, we use MiniCast[17]

as a protocol, since it has been shown to perform much better than well-known

strategies. Thus, in a nutshell, in this work we aim to develop a communication

assisted decentralized fast and reliable mechanism to aggregate data from all the

nodes without revealing their actual data to anyone else in the system.

46

4.3 Design

In this work we assume a semi-honest adversarial model where every node in the

system is supposed to follow the protocol specification correctly. However, the

honest-but-curious or passive adversaries are free to learn the information from

the internal states of the other nodes. In summary our proposed solution try to

achieve the following:

1. Privacy: Preservation of privacy of individual values shared by the nodes

in the network even if a set of less than n − 1 parties collude, i.e., no-one

learns the input of any other node in the network.

2. Correctness: If all the participating nodes are semi-honest, then the overall

aggregated value is a joint function of these private values.

3. Robustness: The aggregated value remains intact even if some nodes drop

out intentionally from the protocol after initial bootstrapping phase.

4. Efficiency: The protocol doesn’t assume cryptographic operations except

the initial Diffie-Hellman Key exchange, which is also not required for each

aggregation round.

Note that a pair-wise secure data sharing mechanism cannot solve the prob-

lem. In our approach, a node never shares the original data with anyone specific.

Rather, in a nutshell every node shares the data after properly obfuscating it

through a masking function designed in a way so that application of the corre-

sponding de-masking function over all the data from all the nodes only can reveal

the target joint function value.

For computing a joint function over multiple entities in private manner there

need to have a communication among themselves in order to perform privacy pre-

47

Overall
Process

Private
Data

aggregation

Chronological
View

Node Join
Scheduling for

Node
Dropouts

Time-
Sync BootstrappingPre-processing Private Data

aggregation
Dropout

Discovery

Time

Bootstrapping
Phase

Yes

Aggregation

Node Join
Request

Yes

No Waiting for
Sync

Yes

No

Yes

No

NoStart Bootstrapping
Phase

Private Data
aggregation

Node Joins

Start Public Key
Genration Minicast Pair-Wise

Secret Keys

Start Pre-Processing
Phase Minicast Required Nodes

Available

Node Dropout
Discovery

Time-Sync

Received
Minicast

Aggregation
Statistics

Calculation

Required
Nodes

Available

End

Abort

Aggregation
Statistics

Calculation

Figure 4.2: Schematic View of end-to-end execution of proposed protocol

48

0
25
50
75
100

Da
ta

 R
ec

ep
tio

n
%

Key Exchange MPC Malicious Recovery

0 2 4 6 8 10

Shared Keys −

Init −

Public Key −
 Generation

−

−
−

Aggregation

Init

Offline PhaseNo
de

 S
ta

te

Figure 4.3: An archetypal view of overall Aggregation Process: The upper

image depicts each node’s progress (the Sync node is the thick red line), while the

lower depicts their status.

serving computation. Therefore, such communication can be expensive, contribut-

ing more to the overall communication cost. To overcome this major bottleneck,

we use All-to-all/many-to-many communication strategy, which plays a pivotal

role in our proposed strategy. In a resource constrained wireless IoT/WSN setting,

many-to-many data sharing is the most complex form of communication[9]. Under

traditional asynchronous communication, convergence of a many-to-many/all-to-

all data sharing takes a huge time and hence, cannot bring the real-time flavor in

our goal. Therefore, we choose to use concurrent communication based flooding

protocols to serve the purpose. There are several protocols that carries out effi-

cient many-to-many data sharing with high reliability and low latency. Because

of its simplicity and efficiency, we select MiniCast as our base. A brief description

of MiniCast is provided below.

49

MiniCast: MiniCast [17] is designed based on the protocol time-sync and flood-

ing [71] which is a one-to-all data sharing strategy. In one-to-all flooding protocol,

a single node disseminates its data to all other nodes in the network. MiniCast

enables propagation of one-to-all floods from each different source nodes in the net-

work through a systematic interspersing using a packet-level TDMA mechanism.

MiniCast is fundamentally a natural extension of one-to-all data dissemination

to support compact time-efficient and reliable data sharing from multiple source

nodes. In time-sync[71] a single packet is disseminated from the source node which

is forwarded by all the nodes through continuous receptions and transmissions. To

support multiple source nodes together, MiniCast enables transmission in chain of

packets following a certain TDMA schedule. A transmission/reception of a full-

chain of packets is referred to as a slot where every node is given a unique sub-slot

position. As an explanation of the process, a chain of size X which is the same as

the number of nodes that every node is willing to share with each other. A chain

of packets is formed based on a TDMA schedule < s0, s1, ..., si, ...sX >, where each

node is given a unique position. The chain is transmitted following the schedule

at every transmission where the data from a single node < xi > is transmitted

and forwarded by the nodes in every step. As the outcome of the MiniCast pro-

cess ideally all the nodes should receive the vector < d0, d1, ..., di, ...dX > when all

the nodes becomes able to effectively convey the data. If for some reason some

node may not be able to receive the full vector, instead receives partial data, e.g.,

< d0, d1, s2, ..., di, ..., sX−1, dX >, where, sub-slot s2 and dX−1 carries out no work.

Apart from benefit of reliability and latency, there is another crucial reason

behind selection of these time-slotted concurrent transmission protocols. Its ex-

plained immediately after detailed description of the proposed strategy.

50

4.3.1 Privacy-Preserving Data Aggregation

To keep the protocol simple we assume a semi-honest adversarial model. Conse-

quently, we use unsecured communication channel in MiniCast, i.e., data is trans-

mitted in clear text and hence, each node can see the data shared by any other

node. But our underlying algorithm guarantees that a node learns nothing about

it until it colludes with N-1 other nodes. This bound is very strong with regard to

developing privacy critical decentralised application. Consider there are N nodes

in the system where each node Ni has a private/secret value Si. The nodes want to

jointly compute a function f(S1, S2, ...Sn) = S. The nodes directly can’t send their

individual Si. Therefore, a node computes a value Mi using a function f1, called

a masking function used for obfuscation. In the subsequent MiniCast round, Ni

inserts Mi in its respective sub-slot. After a successful round of data-sharing and

successful accumulation of all the shared values from all the node in the system, a

function f2 is applied over them to compute the value of the aggregation f (i.e.,

S = f2(M1,M2, ...,Mi, ...,Mn) = f(S1, S2, ..., Si, ..., Sn)).

We design a purely collaborative obfuscation procedure. We also do not assume

the presence of any trusted third party. In our approach, in the masking process, a

node first independently computes a set of values corresponding to the contribution

from other nodes (rij, the contribution computed by node Ni for node Nj). Next,

based on the target function f it converts these values using another function f3,

say, qij = f3(rij), which are finally used in the masking process.

The de-masking procedure hence, depends on the contribution of every node

which cleverly serves the goal of computation of the joint function without reveal-

ing the secret data form each node to any specific node. For instance, to mask its

own secret value Si node Ni uses the a contribution qij corresponding to each node

Nj (i.e., Mi = f1(Si, qi1, qi2, ..., qij, ..., qiN)). Note that de-masking can be done

51

only when a node has received all the masked values from all the other nodes.

Fundamentally, all these values pass through a function f2 which computes the

target joint function f . In this de-masking process with f2, the effect of qij is

nullified by qji, which is shared by node Nj and is brought together when Nj’s

shared value Sj is available while applying f2. The functions f1, f2 and f3 are

designed carefully based on the target function f .

For example, if the target aggregation function is sum of all the secret values,

i.e., S =
∑N

i=1 Si, both f1 and f2 are summation functions while f3 can be defined

as f3(rij) = rij, if i < j, and f3(rij) = - rij if i > j. To elaborate, Mi is computed

as Si +
∑

i ̸=j qij where qij = - rij, when i > j and qij = rij when i < j. Hence,

Mi =
∑n

j=1,i<j rij−
∑n

j=1,i>j rij. Combining all the Mi from all the different nodes,

f can be computed as follows.∑n
i=1Mi =

∑n
i=1(Si + Ci)

=
∑n

i=1 Si +
∑n

i=1Mi

=
∑n

i=1 Si +
∑n

i=1(
∑n

j=1 rji −
∑n

j=1 rij)

=
∑n

i=1 Si + (
∑n

i=1

∑n
j=1 rji)− (

∑n
i=1

∑n
j=1 rij)

=
∑n

i=1 Si

The overall data aggregation protocol is summarized later.

4.3.2 Sharing secret pair-wise keys

To enable a node to compute the masking contribution from every other node

independently (i.e., rij) the nodes carry out a pair-wise a-priori agreement on secret

private key, e.g., node Ni and Nj compute shared secret key as Pij. Subsequently,

rij is computed by feeding Pij|| < seq no > as seed to a Pseudo Random Number

52

Algorithm 3 Bootstrapping Phase

Require: p, g, S = {N1, N2, ...Nn}
Ensure: ∀i, j ∈ S such that i ̸= j ∃ Common Secret Key Sij

1: for i ← 1 to n do

2: Minicast 1[i]← gdimod p

3: end for

4: for all Ni ∈ S do

5: for j ← 1 to n do

6: Pub Keyj ←Minicast 1[j]

7: Sij ← (Pub Keyj)
di mod p

8: end for

9: end for

Generator (PRNG) function. For example, node Ni generates the contribution for

node Nj, i.e., rij as follows rij = PRNG(Pij, seq no), similarly, node Nj, generates

for Node Ni, i.e., rji as follows rji = PRNG(Pij, seq no). Note that here seqno

is the common sequence number used by all the nodes. This sequence number

is borrowed from the underlying network communication framework. In general,

the flooding based protocols execute in a periodic fashion where in every period

a common sequence number is incremented by the initiator and shared by all the

nodes. Thus, the same has been exploited here. It also results in enhancing the

output randomness on every iteration of aggregation protocol.

In order to establish the prior-agrement on the pair-wise secret key we run

an instance of all-to-all data sharing by MiniCast to do a simultaneous pair wise

Diffie-Hellman Key Exchange[72] process.

4.3.3 Application of the proposed strategy

Here we discuss some applications our proposed approach.

53

Algorithm 4 Privacy-Preserving Data Aggregation

Pre-Processing (Offline) Phase

Require: ∀ Ni, Nj ∈ S = {N1, N2, N3, ...Nk} ∃ Sij

Ensure: ∀i ∈ {1, 2, 3, ..., N} ∃ MASKi

1: for all Ni ∈ {N1, N2,Nn} do
2: for j ← 1 to n do

3: if j ∈ (i+ 1, N) then

4: Ni.r[j]← Sij

5: Ni.c[j]← Flip Bits(Sij)

6: else

7: Ni.r[j]← Flip Bits(Sij)

8: Ni.c[j]← Sij

9: end if

10: MASKi ←MASKi
⊗

PRNG(Ni.r[j])

11:
⊙

PRNG(Ni.c[j])

12: end for

13: end for

Aggregation (Online) Phase

Require: ∀ Ni ∈ {N1, N2, N3, ...Nk} ∃ Si & MASKi

Ensure: Y = f(x1, x2, x3, ..., xn)

1: for i ← 1 to n do

2: Minicast 2[i]← Si
⊗

MASKi

3: end for

4: Yk = 0

5: for i ← 1 to n do

6: Yk = Yk +Minicast 2[i]

7: end for

54

• Quasi-Arithmetic Mean

If f is a function which maps an interval I of the real line to the real numbers,

and is both continuous and injective, the f -mean of n numbers x1, . . . , xn ∈ I

is defined as Mf (x1, . . . , xn) = f−1
(
T−1

(
T (f(x1))+···+T (f(xn))

n

))
, which can

also be written

Mf (x⃗) = f−1

(
T−1

(
1

n

n∑
k=1

T (f (xk))

))
(Eq. 1)

where, T is transformation function which obfuscate private value xi.

For this to happen, f need to be injective in order for the inverse function

f−1 to exist. Since f is defined over an interval, therefore f(x1)+···+f(xn)
n

lies

within the domain of f−1.

1. Arithmetic Mean:

It measures the central tendency of the distribution and thus proves to

be helpful in several statistical analyses. With reference to the aboveEq.

1, the arithmetic mean of can be calculated if fx = x. In our case,

f(Si) = Si , where Si is the secret valve for every participating node.

f (S1, S2, · · · , SN) =
∑N

1=1Si
N

f1(Si) = Mi = Si +MASKi (
⊗

= +,
⊙

= −)
f2 (M1,M2, · · · ,MN) =

∑N
1=1Si +MASKi =

∑N
1=1Si

f3(qij) =

PRNG (Sij) + Flip Bits(Sij) i ≤ j

Flip Bits (Sij) - PRNG(Sij) i ≥ j

2. Geometric Mean:

The geometric mean of a data set {a1, a2, . . . , an} is given by:(
n∏

i=1

ai

) 1
n

= n
√
a1a2 · · · an (Eq. 2)

55

The geometrical mean also measures the central tendency, but it is

more suited for data whose values are multiples in nature or exponen-

tial to each other. In such a case, the arithmetic mean fails to give

the actual central tendency. We can achieve the same privacy-aware if

f(x) = log(x).

Apart from the above example, statistical measures, harmonic mean, power

mean, log semiring, etc., can also be measured privately from the data gen-

erated by the sensor nodes.

• Linear Regression Inference:

A linear regression model assumes to have a linear relationship between the

dependent variable y and k-vector set of regressors x. We assume to have a

trained linear model over a dataset of n datapoints i.e. {yi, xi1, . . . , xip}ni=1

of n statistical units, a linear regression model assumes that the relationship

between the dependent variable y and the p-vector of regressors is linear.

This relationship is modeled through a disturbance term or error variable ε

- an unobserved random variable that adds ”noise” to the linear relationship

between the dependent variable and regressors. Thus the model takes the

form

yi = β0 + β1xi1 + · · ·+ βpxip + εi = x⊤
i β + εi, i = 1, . . . n (Eq. 3)

where ⊤ denotes the transpose, so that x⊤
i β is the inner product between

vectors xi and β. Often these n equations are stacked together and written

in matrix notation as

y = Xβ + ε

56

4.3.4 Robustness

Being an solution originally for semi-honest adversarial model, we provide some

robustness

Under a semi-honest adversarial model, the nodes would only try to passively

learn the secret values which is already shown above to be not possible in our

approach. Here we think of two possible situation which can be cause by either

intentional or unintentional behaviors by the nodes. Leveraging the underlying

communication mechanism we design our protocol in a way so that it can success-

fully efficiently defend both the situations.

Node failure after initial participation

For some reason if after initial participation in the protocol, fails to continue to

complete the data sharing process to acquire the data from all the nodes com-

pletely, the protocol execution will remain unaffected in all the remaining nodes.

This becomes possible because of the underlying architecture of MiniCast which

allows the nodes to put their data in their respective slots and once inserted ap-

propriately and is received by at least one ’healthy’ node, the value lives in the

process and eventually all the nodes can receive it and correctly compute the

joint function. However, its quite true and natural that since MiniCast depends

on multi-hop data forwarding, such resilience against node-failure will be limited

upto a certain extent.

Non-participation in the aggregation process

We are achieving privacy preservation through collaboration. Participation of a

node x in the KeyExch process can be considered to be the consent from x about

its active participation in that collaborative effort. However, due to some reason, a

node may not participate after agreeing. The reason maybe some malicious inten-

57

tion to make the computation incorrect or it may also be due to some unexpected

fault. To make our system robust against such situations, we exploit the underly-

ing communication mechanism. MiniCast uses a chain/TDMA schedule for data

sharing. Thus, if a node x after agreeing does not participate in the process, its

sub-slot in the chain will be empty. From this all the nodes can first infer that

the computed value is wrong as the data everyone shared was calculated through

f1 considering the presence of x. From the id of the empty slot itself everyone

can re-calculate their data and re-share again in an subsequent recovery MiniCast

round. But, if it is done without a systematic manner, there can be following two

issues. (a) If node x’s non-participation was due to simple fault, it may again start

participating in the subsequent recovery round and confuse the other nodes. (b)

If it was a malicious step by x, it may try to participate in the recovery round1.

To solve this issue, a message from the initiator is disseminated confirming the ids

of the nodes to be ignored in the subsequent recovery round. In our approach we

introduce a one-to-all dissemination [71] in between two instances of MiniCast.

4.3.5 Protocol framework

Based on the ground as depicted above, here we provide a crisp description of

our design of the proposed protocol. Although the pair-wise key exchange phase

(KeyExch) is a very important component of the proposed work, it is used only

at a pre-defined interval or when needed. The overall process runs in a periodic

fashion as other communication based protocols[9]. Once the pair-wise keys are

established, the actual process of computation of the joint function starts from

the subsequent period. To cover all the possible cases as depicted above, two

back-to-back full MiniCast instances are executed with a time-sync[71] phase in

the beginning of both. The first phase is used for co-ordination of overall network

1To keep it simple, we never change the schedule size in MiniCast.

58

while the second phase is used as a means of conveying the message to the nodes

about the nodes that are missing in the previous round so that in the subsequent

instance of MiniCast, the nodes can provide appropriate their adjustment values

accordingly. The time-diagram and the flow-diagram are provided in Figure 4.2,

respectively. Note that the KeyExch phase is executed after a certain number of

computation phases are over to renew the keys. It can be also revoked when a new

node joins in the system as shown the flow-diagram.

4.3.6 Time-slotted based multi-flooding vs Asynchronous

Communication:

The proposed strategy in this work is actually independent of any specific commu-

nication mechanism. It can run even with asynchronous mechanism for all-to-all

data sharing. However, apart from latency issue to be a significant aspect, there

can be some problem with in the true preservation of privacy of the data under

asynchronous setting even under semi-honest adversarial model. This may happen

mainly due to the issue of the possibilty of unbounded delay in asychronous do-

main. For example, in some round, the data from a node x may take quite a large

time to get disseminated and received other nodes. Due to expiry in the waiting

time, the initiator may start the confirmation flood mentioning the ids of the node

which are to be ignored. Subsequent recovery round of the all-to-all data sharing

will enable the nodes to compute a correct data. However, in case the old data

from node x if comes after the recovery round is over, it will allow the nodes to

reveal the secret value of x which is not expected. Under concurrent transmission

based implementation such situations are strictly prohibited due to highly time-

bounded operations in all the implementation of the strategy. Therefore, it was

one of significant motivating factor for us to adopt time-slotted based protocols

for fulfilling the communication requirement of this work.

59

4.3.7 Scalability

Continuous Group Formation

According to the naive execution of Algo 4, every nodes incorporates a random

value outputted from the SHA using pair-wise keys as seed to it. However, such

technique do provide both high security and fault-tolerance despite being designed

for semi-honest adversarial model. Nevertheless, as the number of participating

nodes grow, the overhead also increases in terms of storing secret pair-keys and ask-

ing 100% reliability from underlying communication protocol, Minicast. However,

if we don’t have complete reliability, still we do guarantee consistent aggregation

statistics through dropouts recovery mechanism. Nevertheless, if the network is

sparse, then the chances of exchange of data between nodes sitting at two extremes

becomes challenging. However, the neighboring nodes from both the nodes con-

sistently receives the data. Moreover, such a scenario is seen with most of the

concurrent transmission based protocols[9]. We exploit this fact and modify the

way we can use our proposed methodology to achieve data aggregation.

In MiniCast, the parameter NTX primarily influences the degree of cover-

age/reliability achieved by the dissemination process. When the NTX is large

enough, a node receives data from all the other nodes in the network. MiniCast,

on the other hand, exhibits highly reliable and constant behaviour even at low

NTX, despite failing to gain complete network coverage. Depending on the precise

amount of NTX, a node successfully gets data from its neighbour within a specific

perimeter. The behaviour is quite non-linear, in that a big amount of data becomes

available at a node with a small increment in NTX, but it takes a considerably

longer period (NTX) to achieve complete network coverage.

We use MiniCast’s above-mentioned behaviour to optimise the execution of

our proposed technique. In summary, we assume a low level of masking. To

60

increase speed, not only is pair-wise key storage minimised, but the data exchange

operation is also run at a low NTX value. To do this, during the bootstrapping

phase, each node is supposed to keep track of which neighbours are accessible at

what NTX value. Using this information, the chain is built in the sharing phase

so that each node distributes evaluation values for a few known pre-determined

neighbours. The procedure completes quickly and with little NTX, and then enters

the rebuilding phase to finish the process.

Spatial Group Formation

Currently, our designed solution can tolerate up to n-1 collusions. However, to

achieve this security level, we need to consider the participation from all the nodes.

Nevertheless, our protocol design is so elegant that it can be applied to more

extensive networks. For instance, we are currently considering all the nodes in

a single group, and each node is incorporating the masking values for all other

group nodes during the obfuscation process. However, A large network can be

split into multiple groups spatially; therefore, each node can be assigned to one of

the group(s). This spatial division can be done using bootstrapping phase where

we run multiple time-sync floods from multiple initiators. The initiator starts the

flood by mentioning the group number. Later on all the nodes who belong to the

same group runs one round of minicast protocol to acheive the pair-wise secret

keys among themselves. Earlier, all the nodes were keeping pair-wise keys for all

the nodes in the network. However, currently each nodes needs to track the keys

for all its group members.

Consequently, each node now runs Algo. 4 to incorporate masking values from

each node who are in its group rather than considering all nodes. If a network

of N nodes is split into M gropus with each group have nearly K nodes, then the

security threshold would reduce to k-1 collusions. Moreover, the chain length in

61

spatial division results in O(k) size. Overall, it can be seen that the same designed

protocol can be applied hierarchically also to alleviate the scalability concerns.

4.4 Evaluation

4.4.1 Shamir-Secret Sharing (SSS)

SSS is a well-known approach for performing privacy-preserving compute activi-

ties in a multi-party scenario, which closely relates to the needs of massive IoT

networks. It divides a secret into sub-parts known as shares. These shares are

subsequently relayed to other network participants. In addition, other parties

transfer their shares in a network. Finally, these shares are combined together and

re-shared to compute the desired computation function. Furthermore, SSS is a

threshold-based cryptography technique in which the minimum number of shares

is required to reconstruct the secret. If any adversary owns less than these thresh-

old shares, the secret is protected under the concept of perfect secrecy. Formally,

SSS is a generalization of the one-time pad, which is basically SSS with a two-share

threshold and two total shares. It achieves privacy-preserving data aggregation us-

ing polynomial interpolation over finite fields with information-theoretic security.

SSS uses threshold-based cryptography to ensure the requirement of a minimum

number of shares to reveal the secret value held by a node. A (t,n) secret sharing

divides a secret into n shares in such a way that any t or more than t shares can re-

construct the secret; but fewer than t shares cannot reconstruct the secret. In SSS,

every participating node divides its secret value into a certain number of sub-parts

known as shares. These shares are subsequently, relayed to other participants in

the network. Finally, each node combines the received shares in a defined way

and computes the desired target function. Thus, at least some finite shares are

necessary to reconstruct the sum of n secret values. Yet, if any adversary owns less

62

than these threshold shares, the secret is protected under the concept of perfect

secrecy. Formally, SSS is a generalization of the one-time pad, where the threshold

is set to two shares. SSS uses polynomial interpolation over finite fields for all

necessary computation. SSS(k + 1, n) at least at least k + 1 shares are necessary

to reconstruct the sum of n number of secret values.

In brief, the strategy works as follows, Let every participating node ni have

its secret value Si. SSS uses polynomial interpolation over finite fields for all

necessary computation. In brief the strategy works as follow. A node ni, having

a secret value Si, first decides it’s k-degree polynomial Pi with coefficients ai,

bi,. . . , Si. Thus, the secret value can be computed as Pi(0). Next, every node

evaluates its own polynomial at a set of n public points, α1,α2,. . . ,αk,. . . , αn, as,

Pi(α1),Pi(α2),. . . ,Pi(αk),. . . ,Pi(αn), where n is the total number of participants.

Every node ni keeps its share Pi(αi) with itself and communicates the remaining

n−1 shares to n−1 distinct nodes through end-to-end secure channels.Every other

party in the network does the same. Thus, a node nj receives only one distinct

share of the polynomial Pi from a node ni, through a secure channel. Node nj

would receive shares of the polynomials from other nodes too. These individual

values are not enough to reconstruct any of the polynomials. Once this initial

sharing is over, each node locally sums up the received values and re-shares the

summed value with other nodes. Using the finally shared values, a new polynomial

of degree k is formed by the Lagrange Interpolation technique. The constant term

in this polynomial represents the desired sum of the secret values over all the nodes.

These final polynomial calculations can be efficiently realized using the Lagrange

Interpolation technique.

63

P1 = a1x
k + b1x

k−1 ++ S1 (4.1)

P2 = a2x
k + b2x

k−1 ++ S2 (4.2)

P3 = a3x
k + b3x

k−1 ++ S3 (4.3)

...

Pn−1 = an−1x
k + bn−1x

k−1 ++ Sn−1 (4.4)

Pn = anx
k + bnx

k−1 ++ Sn (4.5)

Pfinal(x) =
n∑

i=1

Pi(x)

,

Pfinal(0) =
n∑

i=1

Si

The same can be easily written using the Lagrangian Interpolation Scheme:

f(0) =
k−1∑
j=0

yj

k−1∏
m=0
m ̸=j

xm

xm − xj

Example: Consider an example of 5 nodes who wish to carry out the ag-

gregation task involving an individual’s secret values. Now, each one chooses its

polynomial Pi and shares the respective with other parties. Technically, each node

places its corresponding shares in the Minicast chain. The chain structure can be

generalized to N nodes as shown in Figure 4.1. We divide the aggregation process

in two phases: Sharing and Re-construction Phase. In sharing every node commu-

nicates its polynomial shares following the chain structure shown in Figure 4.1(a).

Moreover, in Re-construction pahse every nodes shares its local sum following the

chain structure as highlighted in Figure 4.1(b). For instance, if N nodes are willing

to carry out aggregation task, then for sharing phase the chain length would be

N × (N − 1) ≈ O(n2). However, it would be O(n) for re-construction phase.

64

4.4.2 Neighbourhood based Shamir Secret Sharing (NSSS)

The naive adoption of SSS results in O(n2) communication time as the number of

the packets that need to be communicated in the network are quadratic. However,

it is so because every participating node is forwarding the its polynomial shares

to all other nodes in the network. But, when the degree of polynomial is signifi-

cantly less than the total number of nodes i.e. d < N , then such communication

complexity results is high overhead despite the fact that any set of d + 1 nodes

can reconstruct the resulting polynomial. We exploit this fact and proposed a

scalable approach in order to achieve SSS in large scale IoT networks. We tweak

the current technique in order to reduce the communication time from O(n2) to

O(nk), where d ≤ k ≤ N . The intution behind this optimisation is the exploit the

underlying linearity property in SSS.

The initiator starts the all-to-all/many-to-many process and evaluates its d

degree polynomial at k , (k ≥ d) and places these shares into the respective slots

in chain after encrypting them with AES-1282. When the first hop receives the

chain they can take out intiator shares if they belong to them, otherwise they

can evaluates their own polynomials and places their corresponding shares in the

chain and transmits the modifies chain. This process keeps on repeating for several

iterations defined by a parameter NTX. NTX controls the percentage of data flow

in the network. As in this step every node intends to share its data mostly with its

neighboring nodes. Therefore we need significantly less value of NTX compared to

the case of naive execution of SSS. Each node in this phase use d degree polynomial.

This phase would result in chain length of O(nk). After the former sharing process,

the nodes locally decrypts the shares belong to them and locally sum these shares.

2However, we do not need encryption if nodes chooses k degree polynomial with k neighbours

as it will generate k + 1 shares, but it shares only k shares and keeps 1 share with itself. So, it

is impossible to reconstruct its polynomial using any set of collusions using these k shares.

65

Now, as all the nodes starts with same degree polynomial and also evaluates it

same k public points. Therefore, if the nodes shares their aggregated shares then

it would eventually becomes the shares of

Pfinal(x) =
n∑

i=1

Pi(x)

, wherein

Pfinal(0) =
n∑

i=1

Si

. This reconstruction phase would result in the chain length of O(n). Our re-

construction phase is all-to-all data sharing phase, therefore all the nodes can

reconstruct the final aggregation value by interpolating the final polynomial from

these shares in final chain. We implement the proposed strategy in C language

for 802.15.4 compliant radio devices and rigorously tested through simulation and

emulation platforms. We simulate the same in MSPSIM and ns-2 as well as carry

out experiments with the same in two emulation settings using sensor nodes hav-

ing ARM, e.g., Emulation-1 and Emulation-2., which contain 24 and 48 devices,

respectively. We vary the network size and area of deployment for our experiments.

4.4.3 Parameters and Metric

We use the following metrics to measure the efficiency and robustness of our pro-

posed strategy.

• Latency: It is the time taken for a node to get the consistent result of the

desired statistical measure. We assume it to be an end-to-end latency as it

considers both online and offline executions of the protocol. At network level

it indicates the average latency over all the nodes.

• Radio-on time: Total time for which the node keeps its radio on for the

66

data sharing operation and hence, depends on the MiniCast runs. It depends

on the value of NTX. It is also averaged over all the iterations of the protocol.

We specifically define two variations of these metrics viz. sync (latency/ROT)

and all node (latency/ROT). It basically means how much time is taken by the

controller node and all nodes to get the final results. Aside from these two indica-

tors, we also use the metrics Data Reception Percentage(DRP) and Intermediate

Measure(IM). DRP highlights the data received from the percentage of participat-

ing nodes whereas, IM shows the value of the desired statistical measure at each

subsequent packet reception. The number of nodes either fails to turn on the radio

after initial transmission or intentionally dropped out from the desired interaction

round are termed as Faulty percentage.

We run each experiment for at least 1000 iterations and computer the metrics

as an average over all the iterations and the nodes. The error bars in the results

show the standard deviations over the iterations.

In particular, we first show the analysis of our proposed strategy and later

compare its performance with SSS, NSSS and PPMP [46].

67

0 1 2 3 4 5 6 7
0

20

40

60

80

100

Da
ta

 R
ec

ep
tio

n
%
−→

Sync Node
Other nodes

1 2 3 4 5 6 7

−2

−1

0

1
×105

In
te

rm
ed

ia
te

 M
ea

su
re

Reception Number
(a)

−→

−→

Sync Node Other nodes

0 1 2 3 4 5 6
0

20

40

60

80

100

Sync Node
Other nodes

1 2 3 4 5 6
−1

0

1

2

3
×105

(b)

Figure 4.4: Intermediate Sum and network coverage in Emulation-1 and

Emulation-2 environments

68

0

100

200

300

400

(a) Latency

500x500
Sync latency
All node latency

0

100

200

300

400

1000x1000
Sync latency
All node latency

10 30 50 70
0

100

200

300

400

Ti
m

e
(in

 m
s)

Number of Nodes
(b) Radio-on-Time

−→

−→

Sync ROT
All node ROT

10 30 50 70
0

100

200

300

400 Sync ROT
All node ROT

Figure 4.5: Normal Execution: The increment in total number of nodes(N)

and the network diameter (mxn) directly influence both Latency and Radio-on

time (in ms). The sync latency/ROT is measured for keeping in mind the state of

only Sync node whereas, Overall Latency/ROT is the time for the network-wide

calculation of the final result.

69

0

200

400

600

800

(a) Latency
−→

500x500
Sync Node Other nodes 10 30 50 70

0

200

400

600

800

1000x1000

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800Ti
m

e
(in

 m
s)

Number of Nodes
(b) Radio-on-Time

−→

−→

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

Figure 4.6: Malicious Execution: The increment in total number of nodes(N)

and the network diameter (mxn) directly influence both Latency and Radio-on

time (in ms). The sync latency/ROT is measured for keeping in mind the state of

only Sync node whereas, Overall Latency/ROT is the time for the network-wide

calculation of the final result.

70

(i) Emulation-1 (ii) Emulation-2

Failure Nodes %

Figure 4.7: Malicious Execution in Emulation Settings

(i) Emulation-1

(ii) Emulation-2

Number of Nodes

PPDA

PPDA PPDA

PPDA

Figure 4.8: Comparison of our proposed protocol with other state-of-art strategies

71

4.5 Summary

In this work, we propose an efficient and robust privacy-preserving data aggrega-

tion in low-power IoT-systems with the help of concurrent transmission. As per

the knowledge of the authors, this is the first attempt in this direction. Moreover,

the work brings a set of useful insights. The proposed mechanism shows promising

results for low-power devices in terms of both overall completion time of the process

as well as the energy consumption. Use of any encryption technique consumes a

huge space in the packets which ultimately inflates the energy consumption heavily

in the nodes. Howoever, we avoid the the usage of any such cryptographic strategy

that is always preferable in resource-constraint settings. Moreover, message pass-

ing complex- ity of the base strategy used here is O(n2) where n is the number of

source nodes. With such huge message passing even efficient CT based strategies

fail to bring a scalable solution. Thus, to solve the issue, we propose an O(n)

solution. We also utilise the unique features of our underlying communication to

make our data aggregation robust against node dropouts and data privacy. In this

current work, we work in semi-honest adversarial model, therefore we would like

to transform the same developed mechanism for active adversaries and considers

it as immediate future work in this direction.

72

Chapter 5

Conclusion

While in operation, IoT-based smart systems must give adequate assurances such

as security, privacy, resilience, etc. The absence of either of these undoubtedly

poses several risks to both users and the network itself. However, meeting such

standards is not easy because an practical IoT network consists of several devices,

as shown in,3.1 and behaves differently from typical wired networks. The key

challenges are how devices can efficiently interact with one another to achieve any

stated set of goals in the face of internal or external prospective adversaries. As a

result, ensuring the security guarantees for a network comprised of heterogeneous

IoT devices is difficult. However, we believe such characteristics are necessary and

need to be fulfilled for critical applications. Therefore, we consider all require-

ments and develop our protocols with these objectives in mind. We specifically

created protocols for computing aggregate statistics on the data of participating

IoT nodes while maintaining privacy. In addition, we provide a service to make

IoT networks reliable/trustworthy by enabling computation to occur in the face of

Byzantine failures. To make it time and energy-efficient, we introduced a couple

of optimizations over the naive strategy based on the observation that we do not

need the highest degree of privacy protection or fault tolerance for practical cases.

73

Chapter 6

Future Works

6.1 Security in Flooding based communication

In the current state of this work, we assume some restrictions on the malicious

behaviour of participating nodes. We do it because of weaknesses in our underly-

ing communication primitives. Flooding based concurrent communication-based

protocols, completely rely on the strict schedules for transmission/reception of

packets. Thus, any disturbance in the time in any particular node or group of

nodes can completely make the protocols fall apart from the desired communi-

cation process. The victim nodes may send/receive the packets at unexpected

time slots. This would not only waste time but also drain the battery power

without doing any useful work. While under asynchronous communication, there

are many solutions present for secure communication, the same for counterpart is

largely missing. Earlier works tries to make the fundamental one-to-many flood-

ing protocol secure, also does not guarantee the prohibition of injection of false

data by some legitimate/authorized node in the network. Moreover, a set of ma-

licious nodes may coordinate with each other to get a subset of a network flooded

with false data despite the use of the proposed security measures. The proposed

74

one-to-many solution becomes infeasible in case of many-to-many flooding as any

particular malicious node can target several legitimate nodes and then modifies

their data before transmitting which in turn results in an inconsistent network

state. We try to address these issues for many-to-many flooding-based protocols

in both the MAC layer and Network layer using concepts from both symmetric

and asymmetric key cryptography. The raw use of available cryptographic algo-

rithms poses a great challenge in these tiny devices due to the lack of on-device

computation resources. The use of cryptography also poses an extra challenge by

introducing extra overhead in the allocated slot time. This extra time will get

amplified in case of many-to-many as compared to one-to-many. Thus, our aim

here is the development of optimized algorithms that satisfies both data integrity

and doesn’t disturb the overall time with a great margin. The final goal is to

develop end-to-end secure versions of both one-to-many and many-to-many data

communication protocols. On the same side, we did a preliminary study on these

data perturbation activities and have seen the following impact of it in network.

75

Figure 6.1: A grid layout of 50 nodes with network area 500× 500 m2

1 2 3 4 5 6
Hop Distance

0

10

20

30

40

50

Sp
re

ad

1 2 3 4 5 6 7 8 9 10
Number of nodes

0

10

20

30

40

50

Sp
re

ad

Figure 6.2: False data spread in an 50 node network with single and multiple

attackers, respectively

76

6.2 Privacy-Preserving data aggregation in Ac-

tive adversarial model

Our proposed solution for private data analytics uses Multi- party computation

(MPC) to ensure semi-honest security. However, we are curious how such rich

computation tasks can be attained in malicious environments. We are interested

in using approach of proof systems to counter malicious behaviors during secure

computation. We are curious in knowing how these proof systems can be designed

for a Multi-party setting amidst arbitrary failures and incomplete communication

networks. Moreover, we would like to explore the theoretical foundations of MPC

to build efficient protocols that can provide optimal security with a minimum per-

formance overhead. Additionally, we would love to study IoT systems utilising

private computetion techniques from the adversarial perspective. We believe it

would help us learn how to provide provable security guarantees after examin-

ing underlying implementation weaknesses to reason about the security, question

assumptions of deployed algorithms, and under- stand potential model threats.

As a result, it would help us design robust Internet-of-Things or Wireless-Sensor-

Networks.

77

Dissemination of Research

Results

1. Himanshu Goyal, Sudipta Saha. Multi-party computation in IoT for Pri-

vacy Preservation - Accepted in 42nd IEEE International Conference on

Distributed Computing Systems (ICDCS), 2022, Bologna, Italy.

2. Himanshu Goyal, Sudipta Saha. LiPI: Lightweight Privacy-Preserving Data

Aggregation in IoT - Under Review, IoT Journal.

3. Himanshu Goyal, Sudipta Saha. Practical Synchronous Byzantine Consensus

for Internet-of-Things - Under Review.

4. Himanshu Goyal, Sudipta Saha. DivConMPC: Divide and Conquer based

Privacy Preserving Multi-Party Computation in IoT - To be submitted in

the conference publication.

78

Bibliography

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”

Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] M. Conti, A. Dehghantanha, K. Franke, and S. Watson, “Internet of things

security and forensics: Challenges and opportunities,” 2018.

[3] F. B. de Oliveira, On Privacy-Preserving Protocols for Smart Metering Sys-

tems: Security and Privacy in Smart Grids. Springer, 2016.

[4] E. L. Quinn, “Privacy and the new energy infrastructure,” Available at SSRN

1370731, 2009.

[5] S. Tan, D. De, W.-Z. Song, J. Yang, and S. K. Das, “Survey of security

advances in smart grid: A data driven approach,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 1, pp. 397–422, 2016.

[6] M. T. Moghaddam and H. Muccini, “Fault-tolerant iot,” in International

Workshop on Software Engineering for Resilient Systems, pp. 67–84, Springer,

2019.

[7] M. A. Uddin, A. Stranieri, I. Gondal, and V. Balasubramanian, “A survey

on the adoption of blockchain in iot: Challenges and solutions,” Blockchain:

Research and Applications, vol. 2, no. 2, p. 100006, 2021.

79

[8] J. Lu and K. Whitehouse, Flash flooding: Exploiting the capture effect for

rapid flooding in wireless sensor networks. IEEE, 2009.

[9] M. Zimmerling, L. Mottola, and S. Santini, “Synchronous transmissions in

low-power wireless: A survey of communication protocols and network ser-

vices,” ACM Comput. Surv., vol. 53, Dec. 2020.

[10] S. Tonyali, K. Akkaya, N. Saputro, A. S. Uluagac, and M. Nojoumian,

“Privacy-preserving protocols for secure and reliable data aggregation in

iot-enabled smart metering systems,” Future Generation Computer Systems,

vol. 78, pp. 547–557, 2018.

[11] A. Ara, M. Al-Rodhaan, Y. Tian, and A. Al-Dhelaan, “A secure privacy-

preserving data aggregation scheme based on bilinear elgamal cryptosystem

for remote health monitoring systems,” IEEE Access, vol. 5, pp. 12601–12617,

2017.

[12] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,

no. 11, pp. 612–613, 1979.

[13] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual Sym-

posium on Foundations of Computer Science (sfcs 1986), pp. 162–167, IEEE,

1986.

[14] B. Zhang, G. Liu, and B. Hu, “The coordination of nodes in the internet

of things,” in 2010 International conference on information, networking and

automation (ICINA), vol. 2, pp. V2–299, IEEE, 2010.

[15] M. Conard and A. Ebnenasir, “A practical self-stabilizing leader election for

networks of resource-constrained iot devices,” in 2021 17th European Depend-

able Computing Conference (EDCC), pp. 127–134, IEEE, 2021.

80

[16] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,

R. Struik, J.-P. Vasseur, and R. Alexander, “Rpl: Ipv6 routing protocol for

low-power and lossy networks,” tech. rep., 2012.

[17] S. Saha, O. Landsiedel, and M. C. Chan, “Efficient many-to-many data shar-

ing using synchronous transmission and tdma,” in DCOSS, 2017.

[18] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., 1998.

[19] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed Com-

puting Column) 32, 4 (Whole Number 121, December 2001), pp. 51–58, De-

cember 2001.

[20] L. Lamport, “Fast paxos,” Distributed Computing, 2006.

[21] D. Ongaro and J. Ousterhout, “In search of an understandable consensus

algorithm,” in USENIX, 2014, 2014.

[22] J. C. Corbett, J. Dean, and E. et al., “Spanner: Google’s globally distributed

database,” ACM Trans. Comput. Syst., 2013.

[23] E. Androulaki, A. Barger, and B. et al., “Hyperledger fabric: A distributed

operating system for permissioned blockchains,” in EuroSys, 2018.

[24] L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of consensus pro-

tocols on blockchain applications,” in 2017 4th international conference on

advanced computing and communication systems (ICACCS), pp. 1–5, IEEE,

2017.

[25] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”

[26] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-of-

stake,” 2012.

81

[27] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI, 1999

(M. I. Seltzer and P. J. Leach, eds.), USENIX Association, 1999.

[28] A. Ahmad, M. Saad, and A. Mohaisen, “Secure and transparent audit logs

with blockaudit,” Journal of network and computer applications, vol. 145,

p. 102406, 2019.

[29] L. Gerrits, C. N. Samuel, R. Kromes, F. Verdier, S. Glock, and P. Guitton-

Ouhamou, “Experimental scalability study of consortium blockchains with

bft consensus for iot automotive use case,” in Proceedings of the 19th ACM

Conference on Embedded Networked Sensor Systems, pp. 492–498, 2021.

[30] S. Latif, Z. Idrees, Z. e Huma, and J. Ahmad, “Blockchain technology for the

industrial internet of things: A comprehensive survey on security challenges,

architectures, applications, and future research directions,” Transactions on

Emerging Telecommunications Technologies, vol. 32, no. 11, p. e4337, 2021.

[31] S. R. Maskey, S. Badsha, S. Sengupta, and I. Khalil, “Alicia: Applied in-

telligence in blockchain based vanet: Accident validation as a case study,”

Information Processing & Management, vol. 58, no. 3, p. 102508, 2021.

[32] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence

of faults,” Journal of the ACM (JACM), vol. 27, no. 2, pp. 228–234, 1980.

[33] P. Chen, D. Han, T.-H. Weng, K.-C. Li, and A. Castiglione, “A novel byzan-

tine fault tolerance consensus for green iot with intelligence based on reinforce-

ment,” Journal of Information Security and Applications, vol. 59, p. 102821,

2021.

[34] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. A. Imran, “A scalable

multi-layer pbft consensus for blockchain,” IEEE Transactions on Parallel

and Distributed Systems, vol. 32, no. 5, pp. 1146–1160, 2020.

82

[35] H. Qushtom, J. Mǐsić, X. Chang, and V. B. Mǐsić, “A scalable two-tier pbft

consensus for blockchain-based iot data recording,” in ICC 2021-IEEE Inter-

national Conference on Communications, pp. 1–6, IEEE, 2021.

[36] L. Zhang and Q. Li, “Research on consensus efficiency based on practical

byzantine fault tolerance,” in 2018 10th International Conference on Mod-

elling, Identification and Control (ICMIC), pp. 1–6, IEEE, 2018.

[37] X. Xu, G. Sun, and H. Yu, “An efficient blockchain pbft consensus protocol

in energy constrained iot applications,” in 2021 International Conference on

UK-China Emerging Technologies (UCET), pp. 152–157, IEEE, 2021.

[38] S. Abbasian Dehkordi, K. Farajzadeh, J. Rezazadeh, R. Farahbakhsh, K. San-

drasegaran, and M. Abbasian Dehkordi, “A survey on data aggregation tech-

niques in iot sensor networks,” Wireless Networks, vol. 26, no. 2, pp. 1243–

1263, 2020.

[39] B. Pourghebleh and N. J. Navimipour, “Data aggregation mechanisms in the

internet of things: A systematic review of the literature and recommendations

for future research,” Journal of Network and Computer Applications, vol. 97,

pp. 23–34, 2017.

[40] S. Ozdemir and Y. Xiao, “Secure data aggregation in wireless sensor networks:

A comprehensive overview,” Computer Networks, vol. 53, no. 12, pp. 2022–

2037, 2009.

[41] R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani, “A lightweight privacy-

preserving data aggregation scheme for fog computing-enhanced iot,” IEEE

access, vol. 5, pp. 3302–3312, 2017.

83

[42] J. Zhang, Y. Zhao, J. Wu, and B. Chen, “Lvpda: A lightweight and verifi-

able privacy-preserving data aggregation scheme for edge-enabled iot,” IEEE

Internet of Things Journal, vol. 7, no. 5, pp. 4016–4027, 2020.

[43] J. Jose, M. Princy, and J. Jose, “Peppda: Power efficient privacy preserving

data aggregation for wireless sensor networks,” in 2013 IEEE International

Conference ON Emerging Trends in Computing, Communication and Nan-

otechnology (ICECCN), pp. 330–336, 2013.

[44] Y. Liu, W. Guo, C.-I. Fan, L. Chang, and C. Cheng, “A practical privacy-

preserving data aggregation (3pda) scheme for smart grid,” IEEE Transac-

tions on Industrial Informatics, vol. 15, no. 3, pp. 1767–1774, 2019.

[45] C.-I. Fan, S.-Y. Huang, and Y.-L. Lai, “Privacy-enhanced data aggregation

scheme against internal attackers in smart grid,” IEEE Transactions on In-

dustrial Informatics, vol. 10, no. 1, pp. 666–675, 2014.

[46] T. Jung, X. Mao, X.-Y. Li, S.-J. Tang, W. Gong, and L. Zhang, “Privacy-

preserving data aggregation without secure channel: Multivariate polynomial

evaluation,” in 2013 Proceedings IEEE INFOCOM, pp. 2634–2642, 2013.

[47] W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher, “Pda: Privacy-

preserving data aggregation in wireless sensor networks,” in IEEE INFOCOM

2007 - 26th IEEE International Conference on Computer Communications,

pp. 2045–2053, 2007.

[48] A. C. Yao, “Protocols for secure computations,” in 23rd Annual Symposium

on Foundations of Computer Science (sfcs 1982), pp. 160–164, 1982.

[49] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, p. 612–613, nov

1979.

84

[50] W. Jia, H. Zhu, Z. Cao, X. Dong, and C. Xiao, “Human-factor-aware privacy-

preserving aggregation in smart grid,” IEEE Systems Journal, vol. 8, no. 2,

pp. 598–607, 2014.

[51] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our

data, ourselves: Privacy via distributed noise generation,” in Advances in

Cryptology - EUROCRYPT 2006, (Berlin, Heidelberg), pp. 486–503, Springer

Berlin Heidelberg, 2006.

[52] J. He, L. Cai, P. Cheng, J. Pan, and L. Shi, “Distributed privacy-preserving

data aggregation against dishonest nodes in network systems,” IEEE Internet

of Things Journal, vol. 6, no. 2, pp. 1462–1470, 2019.

[53] D. He, N. Kumar, S. Zeadally, A. Vinel, and L. T. Yang, “Efficient and

privacy-preserving data aggregation scheme for smart grid against internal

adversaries,” IEEE Transactions on Smart Grid, vol. 8, no. 5, pp. 2411–2419,

2017.

[54] T. Dimitriou and A. Michalas, “Multi-party trust computation in decentral-

ized environments,” in 2012 5th International Conference on New Technolo-

gies, Mobility and Security (NTMS), pp. 1–5, 2012.

[55] L. Chen, R. Lu, and Z. Cao, “Pdaft: A privacy-preserving data aggregation

scheme with fault tolerance for smart grid communications,” Peer-to-Peer

networking and applications, vol. 8, no. 6, pp. 1122–1132, 2015.

[56] V. A. Memos, K. E. Psannis, Y. Ishibashi, B.-G. Kim, and B. Gupta, “An

efficient algorithm for media-based surveillance system (eamsus) in iot smart

city framework,” Future Generation Computer Systems.

85

[57] A. P. Plageras, K. E. Psannis, C. Stergiou, H. Wang, and B. Gupta, “Ef-

ficient iot-based sensor big data collection–processing and analysis in smart

buildings,” Future Generation Computer Systems.

[58] V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges of

wireless sensor networks in smart grid,” IEEE Transactions on Industrial

Electronics.

[59] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”

ACM Trans. Program. Lang. Syst., 1982.

[60] “Blockchain challenges and opportunities: A survey,” Int. J. Web Grid Serv.,

2018.

[61] M. Van Steen and A. Tanenbaum, “Distributed systems principles and

paradigms,” Network, vol. 2, p. 28, 2002.

[62] T. Wu, F. Wu, J.-M. Redouté, and M. R. Yuce, “An autonomous wireless body

area network implementation towards iot connected healthcare applications,”

IEEE Access, vol. 5, pp. 11413–11422, 2017.

[63] S. Tyagi, A. Agarwal, and P. Maheshwari, “A conceptual framework for iot-

based healthcare system using cloud computing,” in 2016 6th International

Conference - Cloud System and Big Data Engineering (Confluence), pp. 503–

507, 2016.

[64] T. M. Bojan, U. R. Kumar, and V. M. Bojan, “An internet of things based

intelligent transportation system,” in 2014 IEEE International Conference on

Vehicular Electronics and Safety, pp. 174–179, 2014.

86

[65] H.-T. Wu and G.-J. Horng, “Establishing an intelligent transportation system

with a network security mechanism in an internet of vehicle environment,”

IEEE Access, vol. 5, pp. 19239–19247, 2017.

[66] Y. Saleem, N. Crespi, M. H. Rehmani, and R. Copeland, “Internet of things-

aided smart grid: Technologies, architectures, applications, prototypes, and

future research directions,” IEEE Access, vol. 7, pp. 62962–63003, 2019.

[67] H. Mohammed, S. Tonyali, K. Rabieh, M. Mahmoud, and K. Akkaya, “Effi-

cient privacy-preserving data collection scheme for smart grid ami networks,”

in 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6,

2016.

[68] S. Desai, R. Alhadad, N. Chilamkurti, and A. Mahmood, “A survey of privacy

preserving schemes in ioe enabled smart grid advanced metering infrastruc-

ture,” Cluster Computing, vol. 22, no. 1, pp. 43–69, 2019.

[69] C. Gentry, A fully homomorphic encryption scheme. Stanford university, 2009.

[70] S. Ji and Z. Cai, “Distributed data collection and its capacity in asynchronous

wireless sensor networks,” in 2012 Proceedings IEEE INFOCOM, pp. 2113–

2121, 2012.

[71] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network flood-

ing and time synchronization with glossy,” in IPSN, 2011.

[72] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE transac-

tions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

87

	Certificate of Approval
	Declaration
	Certificate
	Acknowledgement
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Overview of the area
	1.2 Motivation and Objectives of the Study
	1.3 Contribution of the Thesis
	1.4 Experimental-setup
	1.4.1 Experimental-setup: Simulation Platform
	1.4.2 Experimental-setup: Emulation Platform

	2 Literature Review
	2.1 Communication Mechanisms
	2.1.1 All-to-all/Many-to-Many data sharing

	2.2 Works related to Fault-tolerance in IoT & its drawbacks
	2.2.1 Non-Byzantine Fault tolerance
	2.2.2 Byzantine Fault tolerance in IoT and its applications
	2.2.3 Drawbacks of the prior works

	2.3 Works related to Privacy-Preserving Data aggregation in IoT & its drawbacks
	2.3.1 Data-aggregation in wireless sensor networks
	2.3.2 Classification of techniques for private aggregation
	2.3.3 Drawbacks of the prior works

	3 Practical Byzantine Fault Tolerance in IoT
	3.1 Introduction
	3.2 Background
	3.2.1 Practical-Byzantine Fault tolerance (PBFT)

	3.3 Design
	3.3.1 All-to-all vs many-to-many
	3.3.2 Restricted behaviour of the traitors
	3.3.3 Protocol
	3.3.4 Restricted data-sharing

	3.4 Evaluation
	3.4.1 Metrics
	3.4.2 Results

	3.5 Summary

	4 Multi-party computation in IoT
	4.1 Introduction
	4.2 Background
	4.3 Design
	4.3.1 Privacy-Preserving Data Aggregation
	4.3.2 Sharing secret pair-wise keys
	4.3.3 Application of the proposed strategy
	4.3.4 Robustness
	4.3.5 Protocol framework
	4.3.6 Time-slotted based multi-flooding vs Asynchronous Communication:
	4.3.7 Scalability

	4.4 Evaluation
	4.4.1 Shamir-Secret Sharing (SSS)
	4.4.2 Neighbourhood based Shamir Secret Sharing (NSSS)
	4.4.3 Parameters and Metric

	4.5 Summary

	5 Conclusion
	6 Future Works
	6.1 Security in Flooding based communication
	6.2 Privacy-Preserving data aggregation in Active adversarial model

	DISSEMINATION OF RESEARCH RESULTS
	References

